Fig. 5 Modeling of the ASE threshold using the kinetic equations and experimental parameter inputs. Modeling of the ASE threshold using the kinetic equations.

Slides:



Advertisements
Similar presentations
Fig. 2 Nonlinearities in a cavity-embedded perovskite single crystal.
Advertisements

Fig. 2 2D-IR spectroscopy on liquid ZnPa under dry conditions.
Fig. 2 Global production, use, and fate of polymer resins, synthetic fibers, and additives (1950 to 2015; in million metric tons). Global production, use,
Fig. 5 Thermal conductivity of n-type ZrCoBi-based half-Heuslers.
Fig. 1 Evolution of magnetic field lines around a foreshock bubble in the GSE-XY plane (z = 0): Results of a hybrid simulation. Evolution of magnetic field.
Fig. 1 Map of water stress and shale plays.
Fig. 1 Examples of experimental stimuli and behavioral performance.
Fig. 3 Saturation velocity of BP FETs.
Fig. 1 NP-free Ch-CNC droplets.
Fig. 3 Electron PSD in various regions.
Fig. 2 Some examples of weekly forecasts (the number of the forecasts are reported on Table 1). Some examples of weekly forecasts (the number of the forecasts.
Fig. 4 Resynthesized complex boronic acid derivatives based on different scaffolds on a millimole scale and corresponding yields. Resynthesized complex.
Tuning of the conductance plateau of device 1 and quantum dot model
Fig. 6 Comparison of properties of water models.
Fig. 2 Reference-fixing experiment, results.
Fig. 3 Scan rate effects on the layer edge current.
Fig. 1 Experimental apparatus used to train and test free-flying bees on their capacity to learn addition and subtraction. Experimental apparatus used.
Fig. 3 Rotation experiment, setup.
Fig. 1 Product lifetime distributions for the eight industrial use sectors plotted as log-normal probability distribution functions (PDF). Product lifetime.
Fig. 6 External drivers and model response.
Fig. 3 Forward model. Forward model. Summary of the resampled Monte Carlo simulations shown as histograms for epoch 1 (red), epoch 2 (green), and epoch.
Fig. 3 Photon number statistics resulting from Fock state |l, S − l〉 interference. Photon number statistics resulting from Fock state |l, S − l〉 interference.
Fig. 2 2D QWs of different propagation lengths.
Fig. 3 Magnetic and transport properties of ACoO3 (A = Ca, Sr).
Electronic structure of the oligomer (n = 8) at the UB3LYP/6-31G
Fig. 2 Variation of the SHC with carrier lifetime.
Fig. 2 EUV TG signal. EUV TG signal. Black lines in (A), (B), and (C) are the EUV TG signals from Si3N4 membranes at LTG = 110, 85, and 28 nm, respectively,
Fig. 6 WPS imaging of different chemical components in living cells.
Fig. 4 DFT ωB97x/def2-TZVPP atomic charges on the sulfur atom of substituted thioaldehyde and AIMNet prediction with a different number of iterative passes.
Fig. 4 Control analyses ensured that the relation between rotational acceleration and changes in FA does not depend on thresholds. Control analyses ensured.
Fig. 3 ET dynamics on the control and treatment watersheds during the pretreatment and treatment periods. ET dynamics on the control and treatment watersheds.
Fig. 5 Schematic phase diagrams of Ising spin systems and Mott transition systems. Schematic phase diagrams of Ising spin systems and Mott transition systems.
Fig. 4 OER performance of ACoO3 (A = Ca, Sr) in alkaline solutions with different pH. OER performance of ACoO3 (A = Ca, Sr) in alkaline solutions with.
Fig. 4 Evolution of fraction of sickled RBCs under hypoxia.
Fig. 4 Demonstration of dynamic scale invariance at long times.
Fig. 3 Characterization of the current-induced effective fields.
Fig. 2 Results of the learning and testing phases.
Fig. 2 Folding motions of the TCO with strain-softening behavior.
Fig. 2 Schematic drawings of Göbekli Tepe skulls.
Fig. 4 SPICE simulation of stochasticity.
Fig. 6 Global sensitivity analysis illustrates the key model parameters that determine the sickling of RBCs. Global sensitivity analysis illustrates the.
Fig. 2 NH3, NOx, SO2, and NMVOC emission changes triggered by the JJJ clean air policy. NH3, NOx, SO2, and NMVOC emission changes triggered by the JJJ.
Fig. 1 Empirical probability density functions of the estimated climatic drivers. Empirical probability density functions of the estimated climatic drivers.
Fig. 5 Predictions of the efficacy of sickling inhibitors with the kinetic model. Predictions of the efficacy of sickling inhibitors with the kinetic model.
Fig. 1 Global occurrences of hydraulic fracturing–induced seismicity and potential models. Global occurrences of hydraulic fracturing–induced seismicity.
THz pulse-pump optical reflectivity probe spectroscopy on Nd2CuO4
Fig. 4 Relationships between light and economic parameters.
Fig. 5 Comparison of the liquid products generated from photocatalytic CO2 reduction reactions (CO2RR) and CO reduction reactions (CORR) on two catalysts.
Schematic of the proposed brain-controlled assistive hearing device
Fig. 1 Location of the Jirzankal Cemetery.
Fig. 4 CO2 emission changes triggered by the JJJ clean air policy.
Fig. 2 Simulations of possible doping positions and band structures.
Fig. 2 Mean field results. Mean field results. (A) Solutions P(x) to Eq. 4 for a range of T and wc = (B) Modulus ∣pk∣ of order parameters versus.
Fig. 4 The relationship between the total mean absolute momentum disturbance 〈∣p∣〉zB (in units of ℏ/D) and fringe visibility V. The relationship between.
Fig. 3 Comparisons of NDVI trends over the globally vegetated areas from 1982 to Comparisons of NDVI trends over the globally vegetated areas from.
Fig. 3 Electronic conductivity studies.
Fig. 1 Schematic depiction of a paradigm for rapid and guided discovery of materials through iterative combination of ML with HiTp experimentation. Schematic.
Fig. 4 Calculated RIXS data of BCIO.
Fig. 4 Spatial mapping of the distribution and intensity of industrial fishing catch. Spatial mapping of the distribution and intensity of industrial fishing.
Fig. 4 Single-particle contact angle measurements.
Fig. 2 Relaxation to a fitness maximum does not generate a logarithmic fitness trajectory. Relaxation to a fitness maximum does not generate a logarithmic.
Fig. 6 Energetics of the CaL methane reforming process.
Fig. 2 Latitudinal changes in the sea-ice drivers.
Fig. 5 Density plots showing the relationship between growth responses to extreme events and site-level mean precipitation from all sites (N = 1314). Density.
Fig. 4 Behavior of resistance peak near density nm = 5.
Fig. 2 Comparison between the different reflective metasurface proposals when θi = 0° and θr = 70°. Comparison between the different reflective metasurface.
Fig. 3 Rubbery strain, pressure, and temperature sensors.
Fig. 1 Conceptual diagram of warming effects on ecosystem C fluxes above and below the SWC optimum. Conceptual diagram of warming effects on ecosystem.
Fig. 3 Calculated electronic structure of ZrCoBi.
Fig. 3 Spatial distribution of the shoot density (high densities are represented in dark green and low ones in bright yellow) in a simulation of a P. oceanica.
Presentation transcript:

Fig. 5 Modeling of the ASE threshold using the kinetic equations and experimental parameter inputs. Modeling of the ASE threshold using the kinetic equations and experimental parameter inputs. (A) Schematics of the ASE process in neutral and charged CQDs. Blue hollow circles represent holes in the valence band. Black solid circles represent photogenerated electrons, while red solid circles denote excess electrons induced by the electric field. XX, X1−, and X2− are the same denotations as previously described in Fig. 4. (B and C) Emission intensity decay map normalized by the peak value of the photon density under each electric field at the pump fluence of 800 and 1000 μJ/cm2, respectively. At 800 μJ/cm2, the abrupt acceleration of emission (ASE) only occurs under the E-field threshold (20.13 kV/cm). The white dash line locates at the E-field threshold. At 1000 μJ/cm2, the ASE can be observed under the electric field smaller than 149.2 kV/cm (white dash line). (D) Integrated photon density (log scale) map as a function of both the applied electric field (linear scale) and the pump fluence (log scale). The white dash line indicates the E-field threshold, and the blue dash line indicates the threshold behavior under different electric fields. (E) Simulated and experimental ASE threshold behavior as a function of the applied electric field. Junhong Yu et al. Sci Adv 2019;5:eaav3140 Copyright © 2019 The Authors, some rights reserved; exclusive licensee American Association for the Advancement of Science. No claim to original U.S. Government Works. Distributed under a Creative Commons Attribution NonCommercial License 4.0 (CC BY-NC).