-x - y ½+z - ( ½+y ½-x ¼+z) -½-x-y -½+x-y ¼

Slides:



Advertisements
Similar presentations
Parallel Lines. We have seen that parallel lines have the same slope.
Advertisements

Phasing Goal is to calculate phases using isomorphous and anomalous differences from PCMBS and GdCl3 derivatives --MIRAS. How many phasing triangles will.
Patterson in plane group p2 (0,0) a b SYMMETRY OPERATORS FOR PLANE GROUP P2 1) x,y 2) -x,-y.
6.1 Vector Spaces-Basic Properties. Euclidean n-space Just like we have ordered pairs (n=2), and ordered triples (n=3), we also have ordered n-tuples.
Graphing Equations: Point-Plotting, Intercepts, and Symmetry
Sullivan Algebra and Trigonometry: Section 2.2 Graphs of Equations Objectives Graph Equations by Plotting Points Find Intercepts from a Graph Find Intercepts.
Fourier transform. Fourier transform Fourier transform.

Algebra 1: Solving Equations with variables on BOTH sides.
Autar Kaw Humberto Isaza Transforming Numerical Methods Education for STEM Undergraduates.
Inequalities What are the meanings of these symbols?
In Lab on Tuesday at noon
Solving Linear Systems using Linear Combinations (Addition Method) Goal: To solve a system of linear equations using linear combinations.
Vocabulary: Chapter Section Topic: Simultaneous Linear Equations
Row Reduction Method Lesson 6.4.
Chapter 3 Vectors Coordinate Systems Used to describe the position of a point in space Coordinate system consists of A fixed reference point called.
Tonight’s Homework: 6-6: (page 456) (evens): 4 – 18, 24, 28, 32 – 38, 46, 50, 58 (17 points) (17 points)
Do Now!!! Find the values of x that satisfy and explain how you found your solution. Solution: First, you must factor the numerator and denominator if.
Chapter 3 Linear Equations and Functions TSWBAT find solutions of two variable open sentences, and graph linear equations and points in two variables.
Chapter 2 Section 2.4 Lines and Planes in Space. x y z.
College Algebra Fifth Edition James Stewart Lothar Redlin Saleem Watson.
Chem Patterson Methods In 1935, Patterson showed that the unknown phase information in the equation for electron density:  (xyz) = 1/V ∑ h ∑ k.
ALGEBRA LESSON 2 EVALUATING EXPRESSIONS AND CHECKING.
Phasing Today’s goal is to calculate phases (  p ) for proteinase K using PCMBS and EuCl 3 (MIRAS method). What experimental data do we need? 1) from.
1. Diffraction intensity 2. Patterson map Lecture
Systems of Linear Equations The Substitution Method.
Graphing Quadratic Equations
Pre-calc section 4-3 Reflections and symmetry part II.
EQUATIONS! By: Alex Shipley. Definition A statement that two quantities are equal. Uses an equal sign; not an expression. Any alphabetical letter can.
Lesson 5.2 AIM: Review of Vertex and Axis of Symmetry.
1.1 Functions This section deals with the topic of functions, one of the most important topics in all of mathematics. Let’s discuss the idea of the Cartesian.
Interpreting difference Patterson Maps in Lab this week! Calculate an isomorphous difference Patterson Map (native-heavy atom) for each derivative data.
Section 9-2 Graphing Circles 1 General form for a circle Represents the center of the circle Represents a point on the circle Represents the radius of.
Problem Set Problem 1—These are NOT orthogonal coordinates. Generally d=(a 2 x 2 +b 2 y 2 +c 2 z 2 +2abxycos  +2acxzcos  +2bcyzcos  ) 1/2 Similar formula.
Interpreting difference Patterson Maps in Lab today! Calculate an isomorphous difference Patterson Map (native-heavy atom). We collected 8 derivative data.
Today: compute the experimental electron density map of proteinase K Fourier synthesis  (xyz)=  |F hkl | cos2  (hx+ky+lz -  hkl ) hkl.
Lecture 3 Patterson functions. Patterson functions The Patterson function is the auto-correlation function of the electron density ρ(x) of the structure.
SECTION 3.2 SOLVING LINEAR SYSTEMS ALGEBRAICALLY Advanced Algebra Notes.
Vectors in space Two vectors in space will either be parallel, intersecting or skew. Parallel lines Lines in space can be parallel with an angle between.
The Quadratic Equation
Solving systems of equations
6) x + 2y = 2 x – 4y = 14.
Section 6.4 Graphs of Polar Equations
Transformation of Axes
Image Geometry and Geometric Transformation
Transformation of Axes
Phasing Today’s goal is to calculate phases (ap) for proteinase K using MIRAS method (PCMBS and GdCl3). What experimental data do we need? 1) from native.
Sullivan Algebra and Trigonometry: Section 2.2
3.3 Working with Equations
1.2 Introduction to Graphing Equations
Interpreting difference Patterson Maps in Lab today!
Parametric Equations of lines
MATH 1310 Section 2.7.
Copyright © Cengage Learning. All rights reserved.
Section 17.1 Parameterized Curves
Inequalities in Two Variables
Section 1.2 Relations.
Change of Variables in Multiple Integrals
Finding the Distance Between Two Points.
Hour 30 Euler’s Equations
Day 82 – Elimination.
Y-axis A Quadrant 2 Quadrant I (4,2) 2 up

Solving Polynomials by Factoring
RELATIONS & FUNCTIONS CHAPTER 4.
Space groups Start w/ 2s and 21s 222.
Y-axis A Quadrant 2 Quadrant I (4,2) 2 up
Solving systems of 3 equations in 3 variables
1. How do I Solve Linear Equations
College Algebra Sixth Edition
Presentation transcript:

-x - y ½+z - ( ½+y ½-x ¼+z) -½-x-y -½+x-y ¼ Symmetry operator 2 -Symmetry operator 4 -x - y ½+z - ( ½+y ½-x ¼+z) -½-x-y -½+x-y ¼

-x - y ½+z - ( ½+y ½-x ¼+z) -½-x-y -½+x-y ¼ Symmetry operator 2 -Symmetry operator 4 -x - y ½+z - ( ½+y ½-x ¼+z) -½-x-y -½+x-y ¼ Plug in u. u=-½-x-y 0.18=-½-x-y 0.68=-x-y Plug in v. v=-½+x-y 0.22=-½+x-y 0.72=x-y Add two equations and solve for y. +(0.72= x-y) 1.40=-2y -0.70=y Plug y into first equation and solve for x. 0.68=-x-(-0.70) 0.02=x

-x - y ½+z - ( ½+y ½-x ¼+z) -½-x-y -½+x-y ¼ Symmetry operator 2 -Symmetry operator 4 -x - y ½+z - ( ½+y ½-x ¼+z) -½-x-y -½+x-y ¼ Plug in u. u=-½-x-y 0.18=-½-x-y 0.68=-x-y Plug in v. v=-½+x-y 0.22=-½+x-y 0.72=x-y Add two equations and solve for y. +(0.72= x-y) 1.40=-2y -0.70=y Plug y into first equation and solve for x. 0.68=-x-(-0.70) 0.02=x

-x - y ½+z - ( ½+y ½-x ¼+z) -½-x-y -½+x-y ¼ Symmetry operator 2 -Symmetry operator 4 -x - y ½+z - ( ½+y ½-x ¼+z) -½-x-y -½+x-y ¼ Plug in u. u=-½-x-y 0.18=-½-x-y 0.68=-x-y Plug in v. v=-½+x-y 0.22=-½+x-y 0.72=x-y Add two equations and solve for y. +(0.72= x-y) 1.40=-2y -0.70=y Plug y into first equation and solve for x. 0.68=-x-(-0.70) 0.02=x

-x - y ½+z - ( ½+y ½-x ¼+z) -½-x-y -½+x-y ¼ Symmetry operator 2 -Symmetry operator 4 -x - y ½+z - ( ½+y ½-x ¼+z) -½-x-y -½+x-y ¼ Plug in u. u=-½-x-y 0.18=-½-x-y 0.68=-x-y Plug in v. v=-½+x-y 0.22=-½+x-y 0.72=x-y Add two equations and solve for y. +(0.72= x-y) 1.40=-2y -0.70=y Plug y into first equation and solve for x. 0.68=-x-(-0.70) 0.02=x

½-y ½+x ¾+z - ( -y -x ½-z) ½ ½+2x ¼+2z Symmetry operator 3 Plug in v. v= ½+2x 0.48= ½+2x -0.02=2x -0.01=x Plug in w. w= ¼+2z 0.24= ¼+2z -0.01=2z -0.005=z

½-y ½+x ¾+z - ( -y -x ½-z) ½ ½+2x ¼+2z Symmetry operator 3 Plug in v. v= ½+2x 0.46= ½+2x -0.04=2x -0.02=x Plug in w. w= ¼+2z 0.24= ¼+2z -0.01=2z -0.005=z

½-y ½+x ¾+z - ( -y -x ½-z) ½ ½+2x ¼+2z Symmetry operator 3 Plug in v. v= ½+2x 0.46= ½+2x -0.04=2x -0.02=x Plug in w. w= ¼+2z 0.24= ¼+2z -0.01=2z -0.005=z

Xstep4=-0.02 ystep4= ?.?? zstep4=-0.005 From step 3 Xstep3= 0.02 ystep3=-0.70 zstep3=?.??? From step 4 Xstep4=-0.02 ystep4= ?.?? zstep4=-0.005 Clearly, Xstep3 does not equal Xstep4 . Use a Cheshire symmetry operator that transforms xstep3= 0.02 into xstep4=- 0.02. For example, let’s use: -x, -y, z And apply it to all coordinates in step 3. xstep3-transformed = - (+0.02) = -0.02 ystep3-transformed = - (- 0.70) = +0.70 Now xstep3-transformed = xstep4 And ystep3 has been transformed to a reference frame consistent with x and z from step 4. So we arrive at the following self-consistent x,y,z: Xstep4=-0.02, ystep3-transformed=0.70, zstep4=-0.005 Or simply, x=-0.02, y=0.70, z=-0.005 The x, y coordinate in step 3 describes one of the heavy atom positions in the unit cell. The x, z coordinate in step 4 describes a symmetry related copy. We can’t combine these coordinates directly. They don’t describe the same atom. Perhaps they even referred to different origins. How can we transform x, y from step 3 so it describes the same atom as x and z in step 4?

Xstep4=-0.02 ystep4= ?.?? zstep4=-0.005 From step 3 Xstep3= 0.02 ystep3=-0.70 zstep3=?.??? From step 4 Xstep4=-0.02 ystep4= ?.?? zstep4=-0.005 Clearly, Xstep3 does not equal Xstep4 . Use a Cheshire symmetry operator that transforms xstep3= 0.02 into xstep4=- 0.02. For example, let’s use: -x, -y, z And apply it to all coordinates in step 3. xstep3-transformed = - (+0.02) = -0.02 ystep3-transformed = - (- 0.70) = +0.70 Now xstep3-transformed = xstep4 And ystep3 has been transformed to a reference frame consistent with x and z from step 4. So we arrive at the following self-consistent x,y,z: Xstep4=-0.02, ystep3-transformed=0.70, zstep4=-0.005 Or simply, x=-0.02, y=0.70, z=-0.005 Cheshire Symmetry Operators for space group P43212 X, Y, Z -X, -Y, Z -Y, X, 1/4+Z Y, -X, 1/4+Z Y, X, -Z -Y, -X, -Z X, -Y, 1/4-Z -X, Y, 1/4-Z 1/2+X, 1/2+Y, Z 1/2-X, 1/2-Y, Z 1/2-Y, 1/2+X, 1/4+Z 1/2+Y, 1/2-X, 1/4+Z 1/2+Y, 1/2+X, -Z 1/2-Y, 1/2-X, -Z 1/2+X, 1/2-Y, 1/4-Z 1/2-X, 1/2+Y, 1/4-Z X, Y, 1/2+Z -X, -Y, 1/2+Z -Y, X, 3/4+Z Y, -X, 3/4+Z Y, X, 1/2-Z -Y, -X, 1/2-Z X, -Y, 3/4-Z -X, Y, 3/4-Z 1/2+X, 1/2+Y, 1/2+Z 1/2-X, 1/2-Y, 1/2+Z 1/2-Y, 1/2+X, 3/4+Z 1/2+Y, 1/2-X, 3/4+Z 1/2+Y, 1/2+X, 1/2-Z 1/2-Y, 1/2-X, 1/2-Z 1/2+X, 1/2-Y, 3/4-Z 1/2-X, 1/2+Y, 3/4-Z

Xstep4=-0.02 ystep4= ?.?? zstep4=-0.005 From step 3 Xstep3= 0.02 ystep3=-0.70 zstep3=?.??? From step 4 Xstep4=-0.02 ystep4= ?.?? zstep4=-0.005 Clearly, Xstep3 does not equal Xstep4 . Use a Cheshire symmetry operator that transforms xstep3= 0.02 into xstep4=- 0.02. For example, let’s use: -x, -y, z And apply it to all coordinates in step 3. xstep3-transformed = - (+0.02) = -0.02 ystep3-transformed = - (- 0.70) = +0.70 Now xstep3-transformed = xstep4 And ystep3 has been transformed to a reference frame consistent with x and z from step 4. So we arrive at the following self-consistent x,y,z: Xstep4=-0.02, ystep3-transformed=0.70, zstep4=-0.005 Or simply, x=-0.02, y=0.70, z=-0.005 Cheshire Symmetry Operators for space group P43212 X, Y, Z -X, -Y, Z -Y, X, 1/4+Z Y, -X, 1/4+Z Y, X, -Z -Y, -X, -Z X, -Y, 1/4-Z -X, Y, 1/4-Z 1/2+X, 1/2+Y, Z 1/2-X, 1/2-Y, Z 1/2-Y, 1/2+X, 1/4+Z 1/2+Y, 1/2-X, 1/4+Z 1/2+Y, 1/2+X, -Z 1/2-Y, 1/2-X, -Z 1/2+X, 1/2-Y, 1/4-Z 1/2-X, 1/2+Y, 1/4-Z X, Y, 1/2+Z -X, -Y, 1/2+Z -Y, X, 3/4+Z Y, -X, 3/4+Z Y, X, 1/2-Z -Y, -X, 1/2-Z X, -Y, 3/4-Z -X, Y, 3/4-Z 1/2+X, 1/2+Y, 1/2+Z 1/2-X, 1/2-Y, 1/2+Z 1/2-Y, 1/2+X, 3/4+Z 1/2+Y, 1/2-X, 3/4+Z 1/2+Y, 1/2+X, 1/2-Z 1/2-Y, 1/2-X, 1/2-Z 1/2+X, 1/2-Y, 3/4-Z 1/2-X, 1/2+Y, 3/4-Z

Xstep4=-0.02 ystep4= ?.?? zstep4=-0.005 From step 3 Xstep3= 0.02 ystep3=-0.70 zstep3=?.??? From step 4 Xstep4=-0.02 ystep4= ?.?? zstep4=-0.005 Clearly, Xstep3 does not equal Xstep4 . Use a Cheshire symmetry operator that transforms xstep3= 0.02 into xstep4=- 0.02. For example, let’s use: -x, -y, z And apply it to all coordinates in step 3. xstep3-transformed = - (+0.02) = -0.02 ystep3-transformed = - (- 0.70) = +0.70 Now xstep3-transformed = xstep4 And ystep3 has been transformed to a reference frame consistent with x and z from step 4. So we arrive at the following self-consistent x,y,z: Xstep4=-0.02, ystep3-transformed=0.70, zstep4=-0.005 Or simply, x=-0.02, y=0.70, z=-0.005 Cheshire Symmetry Operators for space group P43212 X, Y, Z -X, -Y, Z -Y, X, 1/4+Z Y, -X, 1/4+Z Y, X, -Z -Y, -X, -Z X, -Y, 1/4-Z -X, Y, 1/4-Z 1/2+X, 1/2+Y, Z 1/2-X, 1/2-Y, Z 1/2-Y, 1/2+X, 1/4+Z 1/2+Y, 1/2-X, 1/4+Z 1/2+Y, 1/2+X, -Z 1/2-Y, 1/2-X, -Z 1/2+X, 1/2-Y, 1/4-Z 1/2-X, 1/2+Y, 1/4-Z X, Y, 1/2+Z -X, -Y, 1/2+Z -Y, X, 3/4+Z Y, -X, 3/4+Z Y, X, 1/2-Z -Y, -X, 1/2-Z X, -Y, 3/4-Z -X, Y, 3/4-Z 1/2+X, 1/2+Y, 1/2+Z 1/2-X, 1/2-Y, 1/2+Z 1/2-Y, 1/2+X, 3/4+Z 1/2+Y, 1/2-X, 3/4+Z 1/2+Y, 1/2+X, 1/2-Z 1/2-Y, 1/2-X, 1/2-Z 1/2+X, 1/2-Y, 3/4-Z 1/2-X, 1/2+Y, 3/4-Z

Use x,y,z to predict the position of a non-Harker Patterson peak x,y,z vs. –x,y,z ambiguity remains In other words x=-0.02, y=0.70, z=-0.005 or x=+0.02, y=0.70, z=-0.005 could be correct. Both satisfy the difference vector equations for Harker sections Only one is correct. 50/50 chance Predict the position of a non Harker peak. Use symop1-symop5 Plug in x,y,z solve for u,v,w. Plug in –x,y,z solve for u,v,w I have a non-Harker peak at u=0.28 v=0.28, w=0.0 The position of the non-Harker peak will be predicted by the correct heavy atom coordinate.

x y z -( y x -z) x-y -x+y 2z symmetry operator 1 -symmetry operator 5 u v w First, plug in x=-0.02, y=0.70, z=-0.005 u=x-y = -0.02-0.70 =-0.72 v=-x+y= +0.02+0.70= 0.72 w=2z=2*(-0.005)=-0.01 The numerical value of these co-ordinates falls outside the section we have drawn. Lets transform this uvw by Patterson symmetry v,-u,-w. -0.72,0.72,-0.01 becomes -0.72,-0.72,0.01 then add 1 to u and v 0.28, 0.28, 0.01 This corresponds to the peak shown u=0.28, v=0.28, w=0.01 Thus, x=-0.02, y=0.70, z=-0.005 is correct. Hurray! We are finished! In the case that the above test failed, we would change the sign of x.