Presentation Quantum chaos with cold atoms in a standing wave Laboratoire de Physique des Lasers Atomes et Molécules (PhLAM) Villeneuve dAscq, France.

Slides:



Advertisements
Similar presentations
Un percorso realizzato da Mario Malizia
Advertisements

Matter waves 1 Show that the wavelength of an electron can be expressed as where E is the energy in volts and  in nm.
Welcome to Who Wants to be a Millionaire
Phase µ Time Fout q = 360t*Fout TIME 360 PHASE TIME
C. Elberling Oticon Eriksholm Denmark Efficient stimuli for frequency specific ASSR E. Stürzebecher & M. Cebulla Johann Wolfgang Goethe-Univ. Frankfurt.
Statistical Properties of Broadband Magnetic Turbulence in the Reversed Field Pinch John Sarff D. Craig, L. Frassinetti 1, L. Marrelli 1, P. Martin 1,
Welcome to Who Wants to be a Millionaire
1  1 =.
Low Alpha & CSR in the MLS (PTB) G. Wüstefeld (BESSY) et al, ESLS XVI, Daresbury, Nov 28th Low Alpha Optics and Coherent Synchrotron Radiation.
WHO WANTS TO BE A MILLIONAIRE? CAPACITY STYLE.
Who Wants To Be A Millionaire?
Who Wants To Be A Millionaire?
Learning to show the remainder
I can interpret intervals on partially numbered scales and record readings accurately ? 15 ? 45 ? 25 ? 37 ? 53 ? 64 Each little mark.
Hearing & Deafness (4) Pitch Perception 1. Pitch of pure tones 2. Pitch of complex tones.
Welcome to Who Wants to be a Millionaire
£1 Million £500,000 £250,000 £125,000 £64,000 £32,000 £16,000 £8,000 £4,000 £2,000 £1,000 £500 £300 £200 £100 Welcome.
Welcome to Who Wants to be a Millionaire
Photoexcitation and Ionization of Cold Helium Atoms R. Jung 1,2 S. Gerlach 1,2 G. von Oppen 1 U. Eichmann 1,2 1 Technical University of Berlin 2 Max-Born-Institute.
Filters and Enveloping - A Practical Discussion -
FINAL FOCUS: COMBINATION OF PRE ISOLATOR AND ACTIVE STABILISATION K. Artoos, C. Collette, R. Leuxe, C.Eymin, P. Fernandez, S. Janssens * The research leading.
Break Time Remaining 10:00.
1 Damage State Awareness in Composite Laminates Via Ultrasonic Guided Waves Cliff Lissenden Joseph Rose Engineering Science & Mechanics The Pennsylvania.
Classical behaviour of CW Optical Parametric Oscillators T. Coudreau Laboratoire Kastler Brossel, UMR CNRS 8552 et Université Pierre et Marie Curie, PARIS,
DAM-Île de France Département Analyse, Surveillance, Environnement 06/06/2014 DIF/DASE/B.ALCOVERRO 1 INFRASOUND SENSOR CALIBRATION DEVICE 13/11/2001 Infrasound.
08/01/2007Juan Luis Fernandez-Hernando End Station A Measurements on Collimator Wakefields 4th Wakefield Interest Group - CI 05/03/2008 Luis Fernandez-Hernando,
FAR-IR OPTICS DESIGN AND VERIFICATION EXPERIMENTAL SYSTEM AND RESULTS Final Meeting “Far-IR Optics Design and Verification”, Phase 2 27 November 2002,
Hosted by Mrs. Dickard RatiosProportionsUnit Rates Indirect Measurement
Equal or Not. Equal or Not
Carrier and Phonon Dynamics in InN and its Nanostructures
Partial Products. Category 1 1 x 3-digit problems.
Population Transfer Resonance: A new Three-Photon Resonance for Small Scale Atomic Clocks Ido Ben-Aroya, Gadi Eisenstein EE Department, Technion, Haifa,
Overview of ERL R&D Towards Coherent X-ray Source, March 6, 2012 CLASSE Cornell University CHESS & ERL 1 Cornell Laboratory for Accelerator-based ScienceS.
Osservatorio di Arcetri Adaptive primary mirrors for ELTs A. Riccardi 1, P. Salinari 1, G. Brusa 1, R. Ragazzoni 1, S. Esposito 1, D. Gallieni 2 and R.
Dynamical plasma response during driven magnetic reconnection in the laboratory Ambrogio Fasoli* Jan Egedal MIT Physics Dpt & Plasma Science and Fusion.
Space-time positioning at the quantum limit with optical frequency combs Workshop OHP September 2013 Valérian THIEL, Pu JIAN, Jonathan ROSLUND, Roman SCHMEISSNER,
Samansa Maneshi, Jalani Kanem, Chao Zhuang, Matthew Partlow Aephraim Steinberg Department of Physics, Center for Quantum Information and Quantum Control,
Generation of short pulses
Cavity decay rate in presence of a Slow-Light medium
Dynamical Localization and Delocalization in a Quasiperiodic Driven System Hans Lignier, Jean Claude Garreau, Pascal Szriftgiser Laboratoire de Physique.
Experiment F.L. Moore, J.C. Robinson, C.F. Bharucha, B. Sundaram and M.G. Raizen, Phys. Rev. Lett. 25, 4598 (1995) 1. Laser cooling of Na Atoms 2. Driving.
Narrow transitions induced by broad band pulses  |g> |f> Loss of spectral resolution.
Rydberg excitation laser locking for spatial distribution measurement Graham Lochead 24/01/11.
Hyperfine Studies of Lithium using Saturated Absorption Spectroscopy Tory Carr Advisor: Dr. Alex Cronin.
Quantum dynamics with ultra cold atoms Nir Davidson Weizmann Institute of Science Billiards BEC I. Grunzweig, Y. Hertzberg, A. Ridinger (M. Andersen, A.
Strong-field physics revealed through time-domain spectroscopy Grad student: Li Fang Funding : NSF-AMO May 30, 2009 XI Cross Border Workshop on Laser Science.
First year talk Mark Zentile
Transport in Chaotic Systems and Fingerprints of Pseudorandomness Shmuel Fishman Como, March 2009.
Studying dipolar effects in degenerate quantum gases of chromium atoms G. Bismut 1, B. Pasquiou 1, Q. Beaufils 1, R. Chicireanu 2, T. Zanon 3, B. Laburthe-Tolra.
Controlling the dynamics time scale of a diode laser using filtered optical feedback. A.P.A. FISCHER, Laboratoire de Physique des Lasers, Universite Paris.
Collective excitations in a dipolar Bose-Einstein Condensate Laboratoire de Physique des Lasers Université Paris Nord Villetaneuse - France Former PhD.
Wave Packet Echo in Optical Lattice and Decoherence Time Chao Zhuang U(t) Aug. 15, 2006 CQISC2006 University of Toronto.
Elastic collisions. Spin exchange. Magnetization is conserved. Inelastic collisions. Magnetization is free. Magnetic properties of a dipolar BEC loaded.
Wave chaos and regular frequency patterns in rapidly rotating stars F. Lignières Laboratoire d’Astrophysique de Toulouse et Tarbes - France in collaboration.
Quantum Chaos and Atom Optics: from Experiments to Number Theory Italo Guarneri, Laura Rebuzzini, Michael Sheinman Sandro Wimberger, Roberto Artuso and.
Thermodynamics of Spin 3 ultra-cold atoms with free magnetization B. Pasquiou, G. Bismut (former PhD students), B. Laburthe-Tolra, E. Maréchal, P. Pedri,
Jalani F. Kanem 1, Samansa Maneshi 1, Matthew Partlow 1, Michael Spanner 2 and Aephraim Steinberg 1 Center for Quantum Information & Quantum Control, Institute.
Collaborations: L. Santos (Hannover) Former members: R. Chicireanu, Q. Beaufils, B. Pasquiou, G. Bismut A.de Paz (PhD), A. Sharma (post-doc), A. Chotia.
Quantum Optics II – Cozumel, Dec. 6-9, 2004
Relativistic Quantum Theory of Microwave and Optical Atomic Clocks
Quantum Theory Chang Chapter 7 Bylikin et al. Chapter 2.
QUANTUM CHAOS : QUANTUM CHAOS Glows at Sunset
Spatial distributions in a cold strontium Rydberg gas Graham Lochead.
QUANTUM CHAOS : Last Glows at Sunset QUANTUM CHAOS.
Chapter 4. Fourier Transformation and data processing:
Spatial distributions in a cold strontium Rydberg gas Graham Lochead.
Electrostatic fluctuations at short scales in the solar-wind turbulent cascade. Francesco Valentini Dipartimento di Fisica and CNISM, Università della.
Millimeter Wave Spectroscopy of Cold 85 Rb Atoms JIANING HAN, YASIR JAMIL, PAUL TANNER, DON NORUM, T. F. GALLAGHER University of Virginia Supported by:
 The electron electric dipole moment (eEDM) is aligned with the spin and interacts with the giant (~84 GV/cm) effective internal electric field of the.
Quantum Mechanics I Quiz Richard Feynman, bongo drummer and physicist
Presentation transcript:

Presentation Quantum chaos with cold atoms in a standing wave Laboratoire de Physique des Lasers Atomes et Molécules (PhLAM) Villeneuve dAscq, France Pascal Szriftgiser Jean Ringot Hans Lignier J. C. G. In collaboration with Dominique Delande LKB - Paris

System The system Cold atoms in a standing wave d L /2 V0V0 dB H = P 2 /2 + K cos ( ) n (t-n) Theory: Graham, Schlautman, Zoller PRA 45, 19 (1992) Exp: Moore et al., PRL 73, 2974 (1994); Klappauf et al. PRL 81, 1203 (1998)

Quantum chaos Classical phase portrait K = 0.9 K = 2 K = 5 K = 10 Regular dynamics: Periodic orbits Mixt dynamics: Stability islands Mixt: Small islands Chaotic: Ergodic diffusion

Quantum chaos Momentum evolution P(p) ~ e -|p|/p L Log P p

Quantum chaos Dynamical localization t Quantum Classical P(p)P(p) P(p)P(p) P(p)P(p) Theory: Casati, Chirikov, Ford, Izrailev (1979) Experience : Moore, Robinson, Bharucha, Williams, Raizen (1994) t L ~ t H = h/ Heisenberg time

System Momentum distribution measurement Stimulated Raman transitions R 1 2 hf Resonant probe F = 3 F = 4 v 0 = R /2k L v r /10

Quantum chaos Experiment

Dynamical localization Momentum distributions f (kHz) Final distribution (50 kicks) p/hk Initial distribution Exponencial fit Gaussian fit

Dynamical localization Quasi-periodic kicks f1f1 f2f2 f 1 /19 0

Dynamical localization Dynamical localization with two colors For « irrational » values of the frequency ratio, the classical diffusive behavior is preserved Initial distribution Freq. ratio = Freq. ratio = Initial distribution Frequency ratio = 1,0833… Frequency ratio = 1 Number of atoms (log) Momentum (hk)

Dynamical localization Localization measurement Initial Localized Delocalized Consevation of the atom number The population P(0) of the 0 velocity class is a mesurement of the degree of localization

Dynamical localization Localization spectrum 1 1/2 2 3/2 3/4 1/3 2/3 4/3 5/3 5/4 1/4 Localization P(0) Frequency ratio Breaking the periodicity destroys localization J. Ringot, P. Szriftgiser, J.C.G., D. Delande, PRL 85, 2341 (2000)

Sub-Fourier Sub-Fourier lines Atomic signal Frequency ratio r F 12 Experimental F 12 The lines ARE NOT FTs of a temporal signal! « Sub-Fourier » resolution: f 1 f 2 for T mes < 1/|f 1 -f 2 | P. Szriftgiser, J. Ringot, D. Delande, J.C.G., submited to PRL Resolution ~ 1/T exp Exp) F

Sub-Fourier = /14 = /37 Quantum interference sensitivity ot frequency and phase Interpretation

Sub-Fourier Interpretation Kicks Width number of kicks K [1+ A cos(2 rt)] n (t-n) r

Sub-Fourier Physical mechanism = P2P2 N r -1 r e -i N/rN/rN N ~ 0 periodicity N ~ /2 quasi-periodicity Résolution is due to the dynamical spectrum, not to the excitation spectrum

Sub-Fourier Evolution of the width N r N Fourier limit K = 14 K = 28 K = 42 1µs1µs 2µs2µs 3µs3µs 1/N 2 = D N N r -1 r ~ N 2 Before localization = PL2PL2 N r -1 r ~ N After localization

Conclusion Complex dynamics – unexpected results Simplicity and versatility Detailed experimental study of the linewidth Interpretation – physical mechanisms New conditions: anomalous diffusion r ~1/N 3 Quatum-chaotic signal processing ultrafast frequency locking (?)

Funding CNRS Ministère de la Recherche Région Nord-Pas de Calais Comunidade Européia

Sub-Fourier Resolution (quantitative) f f1f1 f2f2 F 12 r = 0.87 F 12 r F 12 /2 F 12 measures the Fourier resolution

Sub-Fourier Excitation spectrum TF T 1/T TF 1/ 1/T

DC Bias4.6 GHz Generation of the Raman beams Master S +1 S -1 FP Raman setup Experimental setup

Sub-Fourier Sub-Fourier resonances Atomic signal Frequency ratio r F 12 Experimental F 12 Experimental) F P. Szriftgiser, J. Ringot, D. Delande, J.C.G., submetido a Nature

Sub-Fourier Sub-Fourier resonances Atomic signal Frequency ratio r F 12 Experimental F 12 Experimental) F P. Szriftgiser, J. Ringot, D. Delande, J.C.G., submetido a Nature

Dynamical localization Kinetic energy Kicks tLtL

System Velocity distribution for the sisyphus molasses 72 kHz T = 3.3 µK Raman detuning

Active magnetic field compensation ON+ offset OFF+offset 1 kHz ~ 300 µG ~ v R /8 ON+offset (kHz) BW ~ 500 Hz Magnetic field compensation Experimental setup Bx By Bz