divMdr isMG mnIS isMG suKivMdr isMG am pRkwS pRsoqm isMG DIrj kumwr pRdIp isMG AmndIp isMG hrpRIq isMG kySv Srmw
ieh ie`k ifkSnrI hY ies qoN Gxwv bxdw hY [ jykr qusIN ies nMuU igPt dyxw hY qW rMgIn kwgj dI loV pvygI ies dy ql nMU F`kx leI Awieqkwr tukVy dI loV pvygI jo ies qrHW dw hY [
ieDr – auDr do isirAW nMU Fu`kx dy leI do lMby Awieqkwr t`ukVy ies qrHW ley jwxgy [ swhmxy qy ip`Cy dy isirAW nMU F`kx dy leI ie`k iBMn mwp dy do hor Awieqkwr t`ukVy ley jwxgy [
ijhVw auprly isry F`kx dy leI ie`k hor Awieqkwr tu`kVw lE TIk AwDwr dy tukVy ijhw hY [ ies nUM auprokq AwikRqI dy s`jy pwsy lwaux qy ies qrHW dI AwikRqI pvygI [
ies qrHW Gxwv dI bwhrI sqHw nMU pUrI qrHW F`ukx dy leI Aqy Cy Awieqkwr tu`kVIAW dw pRXog kIqw hY [ Gxwv dI sqHw dw KyqrPl = 2 (lb + bh + hl ) iesy qrHW hI Gx leI kwgj dw pRXog kIqw auh vrgwkwr kwgj dy tukVy hoxgy [ Gx dw sqHeI KyqrPl =
AsIN AnykW plytW ie`kTIAW krky ie`k dUjy aup`r r`Kky KVy dw Awieqkwr ies qrHW FyrI lhweIey ik ieh lMb c`krI vylx dI qrHW bx jwvy [ ies dw AwDwr c`krwkwr hY Aqy FyrI nMU AwDwr qoN lMb rUp iv`c r`iKAw igAw hY AwE vyKIey iks qrHW ieh lMb c`krI bylx bxdw hY [ qusIN ijs vylx nMU vyK rhy ho auh inSicq rUp iv`c c`krwkwr hY qy AwDwr qoN smkox hY [
bylx dI vkr sqHw dw KyqrPl = 2 ¶rh bylx dI ku`l sqHweI KyqrPl = 2 ¶r(r+ h ) SMkU dI vkr sqHw dw KyqrPl = X l X 2 ¶r =¶rl SMkU dI ku`l sqHw dw KyqrPl = ¶rl + ¶r = ¶r(l + r)
DMnv wd