Today’s topic: Some Celestial Mechanics F Numeriska beräkningar i Naturvetenskap och Teknik.

Slides:



Advertisements
Similar presentations
AP Physics C Mechanics Review.
Advertisements

UNIT 6 (end of mechanics) Universal Gravitation & SHM
UNIT 6 (end of mechanics) Universal Gravitation & SHM.
Angular Quantities Correspondence between linear and rotational quantities:
14 The Law of Gravity.
Review Chap. 12 Gravitation
Conservative vs. Non-conservative Forces
Numeriska beräkningar i Naturvetenskap och Teknik Today’s topic: Some Celestial Mechanics F.
Numeriska beräkningar i Naturvetenskap och Teknik 1. Numerical differentiation and quadrature Discrete differentiation and integration Trapezoidal and.
Summer School 2007B. Rossetto1 5. Kinematics  Piecewise constant velocity t0t0 tntn titi t i+1 x(t) x(t i ) h t x i = v(t i ). h Distance runned during.
Rotation and Torque Lecture 09 Thursday: 12 February 2004.
Physics: Principles with Applications, 6th edition
1 Vectors and Polar Coordinates Lecture 2 (04 Nov 2006) Enrichment Programme for Physics Talent 2006/07 Module I.
Physics 121 Newtonian Mechanics Lecture notes are posted on Instructor Karine Chesnel April 2, 2009.
Test 3 today, at 7 pm and 8:15 pm, in Heldenfels 109 Chapters
Department of Physics and Applied Physics , F2010, Lecture 20 Physics I LECTURE 20 11/21/10.
Phy 211: General Physics I Chapter 10: Rotation Lecture Notes.
R F For a central force the position and the force are anti- parallel, so r  F=0. So, angular momentum, L, is constant N is torque Newton II, angular.
Semester Physics 1901 (Advanced) A/Prof Geraint F. Lewis Rm 560, A29
Physics 106: Mechanics Lecture 05 Wenda Cao NJIT Physics Department.
Newton and Kepler. Newton’s Law of Gravitation The Law of Gravity Isaac Newton deduced that two particles of masses m 1 and m 2, separated by a distance.
Spring Topic Outline for Physics 1 Spring 2011.
College of Physics Science & Technology YANGZHOU UNIVERSITYCHINA Chapter 11ROTATION 11.1 The Motion of Rigid Bodies Rigid bodies A rigid body is.
Universal Gravitation
Monday, Nov. 25, 2002PHYS , Fall 2002 Dr. Jaehoon Yu 1 PHYS 1443 – Section 003 Lecture #20 Monday, Nov. 25, 2002 Dr. Jaehoon Yu 1.Simple Harmonic.
Gravity & orbits. Isaac Newton ( ) developed a mathematical model of Gravity which predicted the elliptical orbits proposed by Kepler Semi-major.
Kinetics of Particles:
Special Applications: Central Force Motion
Typical interaction between the press and a scientist?!
Central Force Motion Chapter 8
Kinetic Energy, Work, Power, and Potential Energy
Kinetic Energy, Work, Power, and Potential Energy
Copyright Kaplan AEC Education, 2005 Dynamics Outline Overview DYNAMICS, p. 193 KINEMATICS OF A PARTICLE, p. 194 Relating Distance, Velocity and the Tangential.
航天动力学与控制 Lecture 年 2 月 4 General Rigid Body Motion –The concept of Rigid Body A rigid body can be defined as a system of particles whose relative.
Two-Body Systems.
MA4248 Weeks 4-5. Topics Motion in a Central Force Field, Kepler’s Laws of Planetary Motion, Couloumb Scattering Mechanics developed to model the universe.
Homework 1 due Tuesday Jan 15. Celestial Mechanics Fun with Kepler and Newton Elliptical Orbits Newtonian Mechanics Kepler’s Laws Derived Virial Theorem.
Physics 430: Lecture 19 Kepler Orbits Dale E. Gary NJIT Physics Department.
Chapter 13 Gravitation. Newton’s law of gravitation Any two (or more) massive bodies attract each other Gravitational force (Newton's law of gravitation)
Gravitation. Gravitational Force and Field Newton proposed that a force of attraction exists between any two masses. This force law applies to point masses.
Monday, Nov. 19, 2007 PHYS , Fall 2007 Dr. Jaehoon Yu 1 PHYS 1443 – Section 002 Lecture #21 Monday, Nov. 19, 2007 Dr. Jae Yu Work, Power and Energy.
The Two-Body Problem. The two-body problem The two-body problem: two point objects in 3D interacting with each other (closed system) Interaction between.
© 2005 Pearson Prentice Hall This work is protected by United States copyright laws and is provided solely for the use of instructors in teaching their.
Chapter 8 Rotational Motion.
Monday, Oct. 6, 2003PHYS , Fall 2003 Dr. Jaehoon Yu 1 PHYS 1443 – Section 003 Lecture #11 Newton’s Law of Gravitation Kepler’s Laws Work Done by.
Rotational Mechanics. Rotary Motion Rotation about internal axis (spinning) Rate of rotation can be constant or variable Use angular variables to describe.
Final review Help sessions scheduled for Dec. 8 and 9, 6:30 pm in MPHY 213 Your hand-written notes allowed No numbers, unless you want a problem with numbers.
Example How far from the earth's surface must an astronaut in space be if she is to feel a gravitational acceleration that is half what she would feel.
D’Alembert’s Principle the sum of the work done by
Chapter 13 Gravitation Newton’s Law of Gravitation Here m 1 and m 2 are the masses of the particles, r is the distance between them, and G is the.
Chapter 13 Gravitation.
Spring 2002 Lecture #21 Dr. Jaehoon Yu 1.Kepler’s Laws 2.The Law of Gravity & The Motion of Planets 3.The Gravitational Field 4.Gravitational.
T. K. Ng, HKUST Lecture III: (1)Reference frame problem: Coriolis force (2)Circular motion and angular momentum (3)Planetary motion (Kepler ’ s Laws)
Central Force Umiatin,M.Si. The aim : to evaluate characteristic of motion under central force field.
Celestial Mechanics II
1 The law of gravitation can be written in a vector notation (9.1) Although this law applies strictly to particles, it can be also used to real bodies.
1 7. Rotational motion In pure rotation every point of an object moves in a circle whose center lies on the axis of rotation (in translational motion the.
PHYS 2006 Tim Freegarde Classical Mechanics. 2 Newton’s law of Universal Gravitation Exact analogy of Coulomb electrostatic interaction gravitational.
College Physics, 7th Edition
College Physics, 6th Edition
3. Force and motion 3.1. Newton’s First Law
Today's Contents Review Elliptic expansion parallelogram.
7. Rotational motion In pure rotation every point of an object moves in a circle whose center lies on the axis of rotation (in translational motion the.
Chapter 8 Rotational Motion
8-1 Angular Quantities In purely rotational motion, all points on the object move in circles around the axis of rotation (“O”). The radius of the circle.
Chapter 8 Rotational Motion.
PHYS 1443 – Section 501 Lecture #19
9. Gravitation 9.1. Newton’s law of gravitation
Mechanical Energy in circular orbits
Chapter 2 - Part 1 The two body problem
Presentation transcript:

Today’s topic: Some Celestial Mechanics F Numeriska beräkningar i Naturvetenskap och Teknik

Coordinate systems Cartesian coordinates Unit vectors are orthogonal with norm 1 Numeriska beräkningar i Naturvetenskap och Teknik

Cylindrical coordinates Numeriska beräkningar i Naturvetenskap och Teknik

Vector- och scalar product in cylindrical coordinates Orthogonal Right hand system Numeriska beräkningar i Naturvetenskap och Teknik

Spherical coordinates Numeriska beräkningar i Naturvetenskap och Teknik

Force law Torque Angular momentum gives: Introductory mechanics Numeriska beräkningar i Naturvetenskap och Teknik

The angular momentum is constant in a central force field... Numeriska beräkningar i Naturvetenskap och Teknik A quantity that does not change with time, i.e. our case does not change along the trajectory of a planet is called a: CONSTANT OF MOTION If we can find a quantity whose time derivative is zero that quantity is a constant of motion.

Central force r x p is orthogonal to r, i.e. r is orthogonal to L which is constant. 1 Angular momentum is a constant of motion 2. Motion is in a plane Numeriska beräkningar i Naturvetenskap och Teknik

In order write down the equations of motion we need the acceleration in cylindrical coordinates. This problem relies on the calculus you learn in math class! Numeriska beräkningar i Naturvetenskap och Teknik

Velocity in cylindrical coordinates Motion in the plane due to central force Radial velocity Angular velocity Numeriska beräkningar i Naturvetenskap och Teknik

In the same way… acceleration in cylindrical coordinates Numeriska beräkningar i Naturvetenskap och Teknik and also using the same method we can derive

Numeriska beräkningar i Naturvetenskap och Teknik Acceleration in cylindrical coordinates Look at this at home!

Acceleration in cylindrical coordinates Ins. from above gives that we have TWO components Numeriska beräkningar i Naturvetenskap och Teknik

Equations of motion in the central force system this can also be written as: with the acceleration in the plane Numeriska beräkningar i Naturvetenskap och Teknik

Equations of motion in the plane in cylindrical coordinates Depends explicitly on the force Can be integrated without defining F Now, we note that i.e. Which gives Numeriska beräkningar i Naturvetenskap och Teknik

Sector velocity Kepler’s second law Numeriska beräkningar i Naturvetenskap och Teknik

Rho direction: Equations of motion in the plane in cylindrical coordinates The angular momentum can be used to switch between rho and phi! sinceWe have Substitution gives: We have two functions of time, rho and phi. We want ONE! Numeriska beräkningar i Naturvetenskap och Teknik

The energy is a second constant of motion... Numeriska beräkningar i Naturvetenskap och Teknik

A second constant of motion A conservative force, i.e. a force with potential Numeriska beräkningar i Naturvetenskap och Teknik WHY of interest? Examples of such forces?

A second constant of motion Numeriska beräkningar i Naturvetenskap och Teknik How to get a first order time derivative out of this?

A second constant of motion We think of the chain rule again and multiply by These are equal Numeriska beräkningar i Naturvetenskap och Teknik

in the eq. below We now have time derivatives on both sides of this equation! i.e. Continue by looking at the left hand side l.h can be written Numeriska beräkningar i Naturvetenskap och Teknik Look at this at home!

Kinetic energy from radial motion From L constant we have (still) Numeriska beräkningar i Naturvetenskap och Teknik Potential energy Kinetic energy from motion in phi Lets identify the terms!

Solving the equations of motion One can now either try to integrate with respect to the time, t, or, one can solve with respect to the angle. Two steps for a ”straightforward” solution. 1.Transform equation to be distance rho as function of the angle phi instead of time. 2. Make a 1/rho substitution to create a standard linear diff. eq. with constant coefficients. Numeriska beräkningar i Naturvetenskap och Teknik

Solving the equations of motion From second order time derivative to second order derivative in phi: Numeriska beräkningar i Naturvetenskap och Teknik Apply it two times

At this point we have but Binet! Numeriska beräkningar i Naturvetenskap och Teknik

Solving the equations of motion Binet’s equation for the kepler case (1/r 2 ) Second order diff equation. (solve with characteristic equation!) Numeriska beräkningar i Naturvetenskap och Teknik

Different orbits Reference direction when α is zero Numeriska beräkningar i Naturvetenskap och Teknik

Different orbits Investigate in the project! Numeriska beräkningar i Naturvetenskap och Teknik

Other thoughts: Which velocity, in which direction, will give circular orbit? Is there a maximum velocity for a planet to stay in a closed orbit around the Sun? If the velocity is below the escape velocity, how does different start angles influence the shape of the orbit? Can you create ellipses and circles from the same starting speed? If a small planet passes close by another planet (e.g. an elliptic orbit that passes close to a jupiter like planet) what will happen. Why? (Voyager slingshots). If we integrate what should be a closed orbit with bad precision what will happen? Numeriska beräkningar i Naturvetenskap och Teknik

Orbital motionρ(t) Numeriska beräkningar i Naturvetenskap och Teknik

Orbital motionρ(t) This integral can in principle be solved t(ρ) but its inversion ρ(t) is not possible in ”simple functions”. The same is true for the angle as a function of time. Numeriska beräkningar i Naturvetenskap och Teknik

Extra Numeriska beräkningar i Naturvetenskap och Teknik

Mean anomaly (ohmega constant, if e=0) Actual angle = true anomaly) Variable substitution... Half major axis Eccentric anomaly Numeriska beräkningar i Naturvetenskap och Teknik

After this substitution... Kepler’s third law (can also be found from geometrical considerations) Numeriska beräkningar i Naturvetenskap och Teknik

Kepler’s equation How find ρ(t)? Only numerical solution Gives ρ for this t! Generally at time t Numeriska beräkningar i Naturvetenskap och Teknik

Two body problem For two interacting bodies the mass above is substituted by the so-called reduced mass Three body problem... Many tried to solve it (Poincare and others) but no solution exists in simple analytical form. Power series expansions exist. The problem has a very interesting background story. As an example, find and read on your own the story behind the Mittag-Leffler prize. Numeriska beräkningar i Naturvetenskap och Teknik

Notera att volymelementet i cylinderkoordinater är: Numeriska beräkningar i Naturvetenskap och Teknik