Spectroscopy on Atoms and selection rules. Lunds universitet / Fysiska institutionen / Avdelningen för synkrotronljusfysik FYST20 VT 2011 I - What is.

Slides:



Advertisements
Similar presentations
Spectroscopy Photoelectron spectroscopy X-ray absorption spectroscopy
Advertisements

Chemical bonding in molecules
Spectroscopy at the Particle Threshold H. Lenske 1.
Now on to quantum numbers…
Spectroscopy Photoelectron spectroscopy X-ray absorption spectroscopy
The Hydrogen Atom. Model The “orbitals” we know from general chemistry are wave functions of “hydrogen-like” atoms Hydrogen-like: any atom, but it has.
CHAPTER 9 Beyond Hydrogen Atom
Lecture 3 Many - electron atoms. The orbital approximation Putting electrons into orbitals similar to those in the hydrogen atom gives a useful way of.
The separated radial and orbital parts of the Schrodinger equation: Note that the angular momentum equation does not depend on the form of the potential,
Physics 452 Quantum mechanics II Winter 2011 Karine Chesnel.
Physics 452 Quantum mechanics II Winter 2012 Karine Chesnel.
Infinite Potential Well … bottom line
Solid State Chemistry Chapter 3 Atomic Structure and Spectra.
Spin-Orbit Effect In addition to its motion about the nucleus, an electron also has an intrinsic angular momentum called “spin” similar to the earth moving.
Atomic Spectroscopy: Atomic Emission Spectroscopy Atomic Absorption Spectroscopy Atomic Fluorescence Spectroscopy * Elemental Analysis * Sample is atomized.
Tentative material to be covered for Exam 2 (Wednesday, October 27) Chapter 16Quantum Mechanics and the Hydrogen Atom 16.1Waves and Light 16.2Paradoxes.
Electron Configuration
Spectral Line Physics Atomic Structure and Energy Levels Atomic Transition Rates Molecular Structure and Transitions 1.
Chapter 41 Atomic Structure
Chapter 5 Alkali atoms Properties of elements in periodic table The Alkali metals.
Atomic Structure and Periodicity. Atoms ProtonsNeutronsElectrons 1. Where are the electrons 2. Do they have different energies.
Ch 9 pages Lecture 23 – The Hydrogen Atom.
1 Physical Chemistry III ( ) Chapter 3: Atomic Structure Piti Treesukol Kasetsart University Kamphaeng Saen Campus.
Postulates Postulate 1: A physical state is represented by a wavefunction. The probablility to find the particle at within is. Postulate 2: Physical quantities.
MULTIELECTRON ATOMS l ELECTRON SPIN: Electron has intrinsic angular momentum - “spin”; it behaves as if it were “spinning”, i.e. rotating around its axis.
Lecture VIII Hydrogen Atom and Many Electron Atoms dr hab. Ewa Popko.
Atomic Orbitals Glenn V. Lo Department of Physical Sciences Nicholls State University.
Lecture 28 Hydrogen 3d, 4s and 4p 4s 3d 4p We can get some insight into the relative Energies of these three orbitals from the website:
CHAPTER 6: ELECTRONIC STRUCTURE. – The Nature of Light – Quantized Energy/Photons –Photoelectric Effect – Bohr’s Model of Hydrogen – Wave Behavior of.
Quantum-Mechanical View of Atoms
Quantum Atom. Problem Bohr model of the atom only successfully predicted the behavior of hydrogen Good start, but needed refinement.
Chapter 7 Atomic Structure & Periodicity. Electromagnetic Radiation O Waves (wavelength, frequency & speed) O  c (page 342: #39) O Hertz O Max Planck.
Physics 451 Quantum mechanics I Fall 2012 Nov 20, 2012 Karine Chesnel.
Germano Maioli Penello Chapter 7 Magnetism in the localised electron model Presentation based on the book Magnetism: Fundamentals, Damien Gignoux & Michel.
Atomic Structure and Periodicity. Atoms ProtonsNeutronsElectrons 1. Where are the electrons 2. Do they have different energies.
Electrons in the Atom. Heisenberg Uncertainty Principle This is the theory that states that it is impossible to determine simultaneously both the position.
Atomic Structure and Atomic Spectra (CH 13)
Chapter 6 Electronic Structure Section 6.5 to End.
Bohr’s Model - electrons travel in definite orbits around the nucleus. Move like planets around the sun. Energy levels – the region around the nucleus.
Rydberg States of Two Valence Electron Atoms W. E Cooke K.A. Safinya W. Sandner F. Gounand P. Pillet N. H. Tran R. Kachru R. R. Jones.
Quantum Numbers n, l, m, and s – Used to describe an electron in an atom Probable location n – Principal Quantum Number – Represents main energy level.
Chapter 6 Section 2. Sec 6.5 Quantum Mechanics and Atomic Orbitals Wave functions – describes the behavior of the electron, denoted with the Greek letter,
Copyright©2000 by Houghton Mifflin Company. All rights reserved. 1 Chemistry FIFTH EDITION Chapter 7 Atomic Structure and Periodicity.
Postulates Postulate 1: A physical state is represented by a wavefunction. The probablility to find the particle at within is. Postulate 2: Physical quantities.
Chapter 6 Section 2. Quantum Mechanics and Atomic Orbitals Wave functions – describes the behavior of the electron, denoted with the Greek letter, ψ The.
Quantum Atom. Problem Bohr model of the atom only successfully predicted the behavior of hydrogen Good start, but needed refinement.
The Quantum Mechanical Picture of the Atom
Chapter 6 Section 2.
7. Quantum-Mechanical View of Atoms
Chapter 41 Atomic Structure
 Heisenberg’s Matrix Mechanics Schrödinger’s Wave Mechanics
What value of wavelength is associated with the Lyman series for {image} {image} 1. {image}
Identical Particles We would like to move from the quantum theory of hydrogen to that for the rest of the periodic table One electron atom to multielectron.
Last Time… 3-dimensional quantum states and wave functions
Unit-IV Many Electron Atoms.
Chapter 7 Atomic Physics.
Quantum Two.
Electron Orbitals Heisenberg 1. The ____________ ______________ principle states that it is impossible to determine simultaneously both the position and.
Chapter 5: Electrons in the Atom
Chapter 41 Atomic Structure
Total Angular Momentum
Quantum Two Body Problem, Hydrogen Atom
Chapter6 Atomic Structure,the Pauli Principle, the Periodic Table
Multielectron Atoms The quantum mechanics approach for treating multielectrom atoms is one of successive approximations The first approximation is to treat.
Chapter – 1 Atomic Spectroscopy
Chemistry Department of Fudan University
Inverse Photoelectric Effect (slide from Chapter3).
7. Quantum-Mechanical View of Atoms
Addition of Angular Momentum
Chapter 6 Section 2.
Presentation transcript:

Spectroscopy on Atoms and selection rules

Lunds universitet / Fysiska institutionen / Avdelningen för synkrotronljusfysik FYST20 VT 2011 I - What is an atom? Modeling ? •N-electrons bound to a nucleus (Z) • N-electrons in interactions •N-electron atom wave function with satisfies

Lunds universitet / Fysiska institutionen / Avdelningen för synkrotronljusfysik FYST20 VT 2011 Step 1: Independent-particle model – no spin •Lets introduce the spherically symmetric potential with •Re-writing the total Hamiltonian Screening of the nucleus

Lunds universitet / Fysiska institutionen / Avdelningen för synkrotronljusfysik FYST20 VT 2011 Step 1: Independent-particle model – no spin •The Schrodinger equation for the central field is separable in N equations since all particles are independent •Schrodinger equation in a central field for the electron i with the “natural” solution Set of good quantum numbers The radial part is not the solution of the hydrogen. The different l-states are not degenerate

Lunds universitet / Fysiska institutionen / Avdelningen för synkrotronljusfysik FYST20 VT 2011 Step 1: Independent-particle model •Spin and the Pauli exclusion principle Electron are fermions of spin ½, so that the wave function must be anti symmetric in the spatial an spin coordinates q i of the electrons •Building up a wave function for N electrons – Slater determinants with

Lunds universitet / Fysiska institutionen / Avdelningen för synkrotronljusfysik FYST20 VT 2011 Step 1: Independent-particle model •Basis set to describe an electronic state – LS representation Electronic configuration Close shell electrons Electronic configuration Open shell electrons Total orbital angular momentum Total spin momentum •Russel-Saunders notation

Lunds universitet / Fysiska institutionen / Avdelningen för synkrotronljusfysik FYST20 VT 2011 Step 2: Beyond the independent-particle model •Apply a perturbation W on the operator H 0 First order Second order is required if •To be considered in the Hamiltonian Electronic correlation ( Z 2 ) Spin orbit ( Z 4 ) and more terms…

Lunds universitet / Fysiska institutionen / Avdelningen för synkrotronljusfysik FYST20 VT 2011 Step 2: Beyond the independent-particle model LS - coupling JJ - coupling First perturbation Second perturbation Dipole Selection rules

Lunds universitet / Fysiska institutionen / Avdelningen för synkrotronljusfysik FYST20 VT 2011 Step 2: Beyond the independent-particle model Fine structure with LS-coupling Hund’s rule 1.the term with the largest possible value of S for a given configuration has the lowest energy; the energy of the other terms increases with decreasing S 2.For a given value of S, the term having the maximum possible value of L has the lowest energy

Lunds universitet / Fysiska institutionen / Avdelningen för synkrotronljusfysik FYST20 VT 2011 Step 2: Beyond the independent-particle model Fine structure with JJ-coupling

Lunds universitet / Fysiska institutionen / Avdelningen för synkrotronljusfysik FYST20 VT 2011 Summary •Define a basis to describe the electronic structure – simple model : independent-particle model •Use this basis to describe the fine structure –more sophisticated model including electron correlations, relativistic term –coupling scheme informs on the interactions LS-coupling JJ-coupling Intermediate coupling

Lunds universitet / Fysiska institutionen / Avdelningen för synkrotronljusfysik FYST20 VT 2011 II - Experimental manifestation •Photo-ionization cross section •Photo-absorption and Photo-ionisation •Auger

Lunds universitet / Fysiska institutionen / Avdelningen för synkrotronljusfysik FYST20 VT 2011 Photo-ionization cross section Argon Krypton Xenon HeliumNeon Samson et al, J. Elec. Spec. Rel. Phenom, 123,265 (2002) A + h   A +(*) + e - Global decrease Cooper Minimum New edges

Lunds universitet / Fysiska institutionen / Avdelningen för synkrotronljusfysik FYST20 VT 2011 Ionization cross section – Global decrease Energy r Potential Unbound states Bound states

Lunds universitet / Fysiska institutionen / Avdelningen för synkrotronljusfysik FYST20 VT 2011 Ionization cross section – Cooper minima Cooper, Phys. Rev. 128, 681 (1962)  =0 

Lunds universitet / Fysiska institutionen / Avdelningen för synkrotronljusfysik FYST20 VT 2011 Photo-absorption / Ionization – one core He + h   He +(*) [ 1 S 1/2 ] + e - (”p”) Photon energy Kinetic Energy (E k ) He + [ 1 S 1/2 ]

Lunds universitet / Fysiska institutionen / Avdelningen för synkrotronljusfysik FYST20 VT 2011 Photo-absorption / Ionization – two cores Xe + h   Xe +(*) [ 2 P Jc ] + e - (”s”,  ”d”)

Lunds universitet / Fysiska institutionen / Avdelningen för synkrotronljusfysik FYST20 VT 2011 Auto-ionization – two cores Photon energy (eV)

Lunds universitet / Fysiska institutionen / Avdelningen för synkrotronljusfysik FYST20 VT 2011 Auto-ionization – parametrization Xe + ( 2 P 3/2 ) Xe + ( 2 P 1/2 ) Closed channel Open channel cc dd V Parameterization of the resonance  a : is the cross section |A c | 2 q: is the profile index A d /(V*A c )  is the reduced energy (E-E r )/(  /2)  is resonance width 2  |V E | 2

Lunds universitet / Fysiska institutionen / Avdelningen för synkrotronljusfysik FYST20 VT 2011 Auto-ionization - parametrization U. Fano, Phys. Rev. 124, 1866 (1961)

Lunds universitet / Fysiska institutionen / Avdelningen för synkrotronljusfysik FYST20 VT 2011 Photo-absorption / Ionization – in the continuum He +* (2s) He + (1s) Ion yield Fluorescence yield V hh

Lunds universitet / Fysiska institutionen / Avdelningen för synkrotronljusfysik FYST20 VT 2011 Tips: Rydberg series assignment Generalized Rydberg formulae IP: Ionization potential R: Rydberg constant (109736,86 cm -1 ) n: principal quantum number, n* effective principal quantum number  : quantum defect

Lunds universitet / Fysiska institutionen / Avdelningen för synkrotronljusfysik FYST20 VT 2011 Auger Core ionization Normal auger Two holes A 2+ Resonant ionization Spectator Participator Resonant auger Continuum Empty valence Inner shell Occupied valence One hole A + One hole- One particle A +*