/faculteit technologie management /faculteit wiskunde en informatica PM-1 Process mining: Discovering Process Models from Event Logs Prof.dr.ir. Wil van.

Slides:



Advertisements
Similar presentations
Numbers Treasure Hunt Following each question, click on the answer. If correct, the next page will load with a graphic first – these can be used to check.
Advertisements

1 A B C
Scenario: EOT/EOT-R/COT Resident admitted March 10th Admitted for PT and OT following knee replacement for patient with CHF, COPD, shortness of breath.
Simplifications of Context-Free Grammars
Angstrom Care 培苗社 Quadratic Equation II
AP STUDY SESSION 2.
1
Feichter_DPG-SYKL03_Bild-01. Feichter_DPG-SYKL03_Bild-02.
Copyright © 2003 Pearson Education, Inc. Slide 1 Computer Systems Organization & Architecture Chapters 8-12 John D. Carpinelli.
1 Copyright © 2013 Elsevier Inc. All rights reserved. Chapter 4 Computing Platforms.
Processes and Operating Systems
Copyright © 2011, Elsevier Inc. All rights reserved. Chapter 6 Author: Julia Richards and R. Scott Hawley.
1 Copyright © 2013 Elsevier Inc. All rights reserved. Appendix 01.
Properties Use, share, or modify this drill on mathematic properties. There is too much material for a single class, so you’ll have to select for your.
1 Hyades Command Routing Message flow and data translation.
David Burdett May 11, 2004 Package Binding for WS CDL.
Business Transaction Management Software for Application Coordination 1 Business Processes and Coordination. Introduction to the Business.
Process Modelling and Standardization
1 RA I Sub-Regional Training Seminar on CLIMAT&CLIMAT TEMP Reporting Casablanca, Morocco, 20 – 22 December 2005 Status of observing programmes in RA I.
Local Customization Chapter 2. Local Customization 2-2 Objectives Customization Considerations Types of Data Elements Location for Locally Defined Data.
CALENDAR.
1 10 pt 15 pt 20 pt 25 pt 5 pt 10 pt 15 pt 20 pt 25 pt 5 pt 10 pt 15 pt 20 pt 25 pt 5 pt 10 pt 15 pt 20 pt 25 pt 5 pt 10 pt 15 pt 20 pt 25 pt 5 pt BlendsDigraphsShort.
1 10 pt 15 pt 20 pt 25 pt 5 pt 10 pt 15 pt 20 pt 25 pt 5 pt 10 pt 15 pt 20 pt 25 pt 5 pt 10 pt 15 pt 20 pt 25 pt 5 pt 10 pt 15 pt 20 pt 25 pt 5 pt RhymesMapsMathInsects.
1 10 pt 15 pt 20 pt 25 pt 5 pt 10 pt 15 pt 20 pt 25 pt 5 pt 10 pt 15 pt 20 pt 25 pt 5 pt 10 pt 15 pt 20 pt 25 pt 5 pt 10 pt 15 pt 20 pt 25 pt 5 pt FactorsFactors.
1 Click here to End Presentation Software: Installation and Updates Internet Download CD release NACIS Updates.
Photo Slideshow Instructions (delete before presenting or this page will show when slideshow loops) 1.Set PowerPoint to work in Outline. View/Normal click.
1. PHOTO INDEX Bayside: Page 5-7 Other Colour Leon: Page 8-10 Cabrera Page Canaria Page Driftwood Page 16 Florence Florence and Corfu Page.
Break Time Remaining 10:00.
This module: Telling the time
Turing Machines.
Table 12.1: Cash Flows to a Cash and Carry Trading Strategy.
PP Test Review Sections 6-1 to 6-6
Bright Futures Guidelines Priorities and Screening Tables
EIS Bridge Tool and Staging Tables September 1, 2009 Instructor: Way Poteat Slide: 1.
Outline Minimum Spanning Tree Maximal Flow Algorithm LP formulation 1.
Bellwork Do the following problem on a ½ sheet of paper and turn in.
CS 6143 COMPUTER ARCHITECTURE II SPRING 2014 ACM Principles and Practice of Parallel Programming, PPoPP, 2006 Panel Presentations Parallel Processing is.
Operating Systems Operating Systems - Winter 2012 Chapter 4 – Memory Management Vrije Universiteit Amsterdam.
Operating Systems Operating Systems - Winter 2010 Chapter 3 – Input/Output Vrije Universiteit Amsterdam.
Exarte Bezoek aan de Mediacampus Bachelor in de grafische en digitale media April 2014.
Sample Service Screenshots Enterprise Cloud Service 11.3.
Copyright © 2012, Elsevier Inc. All rights Reserved. 1 Chapter 7 Modeling Structure with Blocks.
1 RA III - Regional Training Seminar on CLIMAT&CLIMAT TEMP Reporting Buenos Aires, Argentina, 25 – 27 October 2006 Status of observing programmes in RA.
Basel-ICU-Journal Challenge18/20/ Basel-ICU-Journal Challenge8/20/2014.
1..
CONTROL VISION Set-up. Step 1 Step 2 Step 3 Step 5 Step 4.
Adding Up In Chunks.
MaK_Full ahead loaded 1 Alarm Page Directory (F11)
1 10 pt 15 pt 20 pt 25 pt 5 pt 10 pt 15 pt 20 pt 25 pt 5 pt 10 pt 15 pt 20 pt 25 pt 5 pt 10 pt 15 pt 20 pt 25 pt 5 pt 10 pt 15 pt 20 pt 25 pt 5 pt Synthetic.
: 3 00.
5 minutes.
1 hi at no doifpi me be go we of at be do go hi if me no of pi we Inorder Traversal Inorder traversal. n Visit the left subtree. n Visit the node. n Visit.
Prof.ir. Klaas H.J. Robers, 14 July Graduation: a process organised by YOU.
1 Let’s Recapitulate. 2 Regular Languages DFAs NFAs Regular Expressions Regular Grammars.
Speak Up for Safety Dr. Susan Strauss Harassment & Bullying Consultant November 9, 2012.
Essential Cell Biology
Converting a Fraction to %
Clock will move after 1 minute
PSSA Preparation.
Essential Cell Biology
Immunobiology: The Immune System in Health & Disease Sixth Edition
Physics for Scientists & Engineers, 3rd Edition
Energy Generation in Mitochondria and Chlorplasts
Select a time to count down from the clock above
Murach’s OS/390 and z/OS JCLChapter 16, Slide 1 © 2002, Mike Murach & Associates, Inc.
1.step PMIT start + initial project data input Concept Concept.
1 Decidability continued…. 2 Theorem: For a recursively enumerable language it is undecidable to determine whether is finite Proof: We will reduce the.
Discovering Coordination Patterns using Process Mining Prof.dr.ir. Wil van der Aalst Eindhoven University of Technology Department of Information and Technology.
/faculteit technologie management Workflow Mining: Current Status and Future Directions Ana Karla A. de Medeiros, W.M.P van der Aalst and A.J.M.M. Weijters.
Presentation transcript:

/faculteit technologie management /faculteit wiskunde en informatica PM-1 Process mining: Discovering Process Models from Event Logs Prof.dr.ir. Wil van der Aalst Eindhoven University of Technology, P.O.Box 513, NL-5600 MB, Eindhoven, The Netherlands.

/faculteit technologie management /faculteit wiskunde en informatica PM-2 Outline Who we are... –I&T group –selected research projects Process mining –purpose –basic idea –(re)discovery problem –mining algorithm  (W) –comparison –example/tools –case study Conclusion

/faculteit technologie management /faculteit wiskunde en informatica PM-3 Who we are...

/faculteit technologie management /faculteit wiskunde en informatica PM-4 Information & Technology (I&T) group at EUT I&T group (35 persons), Department of Technology Management, Eindhoven University of Technology. Three subgroups: –Business Process Management (workflow management, Petri nets, mining,...) –ICT Architectures (agents, transactions,...) –Software Engineering (software quality,...)

/faculteit technologie management /faculteit wiskunde en informatica PM-5 Selected research projects process mining workflow verification workflow patterns web services composition languages case handling XRL/flower business process improvement... In most cases using/extending Petri net theory!

/faculteit technologie management /faculteit wiskunde en informatica PM-6 Workflow verification: Woflan Can interface with Staffware, Protos, COSA, Meteor. Can handle Event-driven Process Chains (ARIS)

/faculteit technologie management /faculteit wiskunde en informatica PM-7 Workflow patterns The academic response A quest for the basic requirements 20 basic patterns 20+ systems evaluated Joint work with QUT, ATOS, etc. +/- 150 pageviews per working day (> in total)

/faculteit technologie management /faculteit wiskunde en informatica PM-8 Web services composition languages Also process support. Standards considered are BPML, BPEL4WS, XLANG, WSFL, WSCI. Joint work with QUT (Brisbane, Australia).

/faculteit technologie management /faculteit wiskunde en informatica PM-9 Process mining Team members: Wil van der Aalst Ton Weijters Laura Maruster Ana-Karla Medeiros Boudewijn van Dongen Eric Verbeek

/faculteit technologie management /faculteit wiskunde en informatica PM-10 Business Process Management

/faculteit technologie management /faculteit wiskunde en informatica PM-11 No feedback loop

/faculteit technologie management /faculteit wiskunde en informatica PM-12 The basic idea process mining

/faculteit technologie management /faculteit wiskunde en informatica PM-13 Toy example case 1 : task A case 2 : task A case 3 : task A case 3 : task B case 1 : task B case 1 : task C case 2 : task C case 4 : task A case 2 : task B case 2 : task D case 5 : task A case 4 : task C case 1 : task D case 3 : task C case 3 : task D case 4 : task B case 5 : task E case 5 : task D case 4 : task D ABCD {cases 1,3} ACBD {cases 2,4} AED {case 5}

/faculteit technologie management /faculteit wiskunde en informatica PM-14 Result: A Petri net model ABCD ACBD AED  (W) Petri nets are used as a formalism, the target language can be different, e.g., Event-driven Process Chains.

/faculteit technologie management /faculteit wiskunde en informatica PM-15 Focus of this presentation is on the following theoretical question:

/faculteit technologie management /faculteit wiskunde en informatica PM-16 Assumption: complete workflow logs without noise. Let T be a set of tasks.   T * is a workflow trace and W  T * is a workflow log. Let W be a workflow log over T, i.e., W  T *. Let a,b  T: –a > W b if and only if there is a trace  = t 1 t 2 t 3  t n-1 and i  {1, , n-2} such that   W and t i = a and t i+1 = b, –a  W b if and only if a > W b and not (b > W a), –a # W b if and only if not(a > W b) and not(b > W a), and –a  W b if and only if a > W b and b > W a. Let N = (P,T,F) be a sound WF-net, i.e., N  W. W is a workflow log of N if and only if W  T * and every trace   W is a firing sequence of N starting in state [i], i.e., (N,[i])\protect[ . W is a complete workflow log of N if and only if (1) for any workflow log W of N: > W  > W and (2) for any t  T there is a   W such that t  .

/faculteit technologie management /faculteit wiskunde en informatica PM-17 Example 1 case 1 : task A case 2 : task A case 3 : task A case 3 : task B case 1 : task B case 1 : task C case 2 : task C case 4 : task A case 2 : task B case 2 : task D case 5 : task A case 4 : task C case 1 : task D case 3 : task C case 3 : task D case 4 : task B case 5 : task E case 5 : task D case 4 : task D W = { A B C D, A C B D, A E D} A > W B A > W C A > W E B > W C B > W D C > W B C > W D E > W D A  W B A  W C A  W E B  W D C  W D E  W D B  W C C  W B # W : rest Log is complete if this relation cannot be extended X  W Y xor Y  W X xor X  W Y xor X # W Y

/faculteit technologie management /faculteit wiskunde en informatica PM-18 Example 2 W = { A B C D, A C B D} is complete A > W B A > W C B > W C B > W D C > W B C > W D A  W B A  W C B  W D C  W D B  W C C  W B # W : rest

/faculteit technologie management /faculteit wiskunde en informatica PM-19 Example 3 W = { A B D, A C D} is complete A > W B A > W C B > W D C > W D A  W B A  W C B  W D C  W D  W :none # W : rest

/faculteit technologie management /faculteit wiskunde en informatica PM-20 Causal relations imply connecting places Let N = (P,T,F) be a sound WF-net and let W be a complete workflow log of N. For any a,b  T: a  W b implies a    b  . I.e., if there is a causal relation between two transitions according to the workflow log, then there has to be a place connecting these two transitions. Surprisingly this holds for any sound WF-net! A  W B A  W C B  W D C  W D

/faculteit technologie management /faculteit wiskunde en informatica PM-21 Connecting places “often” imply causal relations Let N = (P,T,F) be a sound SWF-net and let W be a complete workflow log of N. For any a,b  T: a    b   and b    a =  implies a  W b. No “short loops” (i.e., loops of length 1 or 2). Structured Workflow Nets (SWF-nets) have no implicit places and the following two constructs cannot be used:

/faculteit technologie management /faculteit wiskunde en informatica PM-22 Example 4: loops of length 1 are harmful A  W B A  W D B  W D There is a place connecting B to B but not B  W B.

/faculteit technologie management /faculteit wiskunde en informatica PM-23 Example 5: loops of length 2 are harmful A  W B B  W D There is a place connecting B to C but not B  W C (because C can be followed directly by B). There is a place connecting C to B but not C  W B (because B can be followed directly by C).

/faculteit technologie management /faculteit wiskunde en informatica PM-24 Example 6: Implicit places remain undetected A  W B B  W C More complex examples can be given showing that the two other requirements for non-SWF-nets are needed.

/faculteit technologie management /faculteit wiskunde en informatica PM-25 Parallelism can “often” be detected Let N = (P,T,F) be a sound SWF-net such that for any a,b  T: a    b =  or b    a =  and let W be a complete workflow log of N. 1.If a,b  T and a   b   , then a # W b. 2.If a,b  T and  a   b  , then a # W b. 3.If a,b,t  T, a  W t, b  W t, and a # W b, then a   b   t  . 4.If a,b,t  T, t  W a, t  W b, and a # W b, then  a   b  t   . This is a complex way of stating that for sound SWF-nets without short loops, it is possible to distinguish XOR-splits from AND-splits and XOR- joins from AND-joins.

/faculteit technologie management /faculteit wiskunde en informatica PM-26 Mining algorithm  (W) Let W be a workflow log over T.  (W) is defined as follows. 1.T W = { t  T     W t   }, 2.T I = { t  T     W t = first(  ) }, 3.T O = { t  T     W t = last(  ) }, 4.X W = { (A,B)  A  T W  B  T W   a  A  b  B a  W b   a1,a2  A a 1 # W a 2   b1,b2  B b 1 # W b 2 }, 5.Y W = { (A,B)  X   (A,B)  X A  A  B  B  (A,B) = (A,B) }, 6.P W = { p (A,B)  (A,B)  Y W }  {i W,o W }, 7.F W = { (a,p (A,B) )  (A,B)  Y W  a  A }  { (p (A,B),b)  (A,B)  Y W  b  B }  { (i W,t)  t  T I }  { (t,o W )  t  T O }, and  (W) = (P W,T W,F W ).

/faculteit technologie management /faculteit wiskunde en informatica PM-27 Solution to the rediscovery problem Let N = (P,T,F) be a sound SWF-net and let W be a complete workflow log of N. If for all a,b  T a   b =  or b   a = , then  (W) = N modulo renaming of places. I.e., any sound SWF-net without short loops can be rediscovered!

/faculteit technologie management /faculteit wiskunde en informatica PM-28 Example 7: Sound SWF-net without short loops

/faculteit technologie management /faculteit wiskunde en informatica PM-29 Example 8: A WF-net with an implicit place  (W)

/faculteit technologie management /faculteit wiskunde en informatica PM-30 Example 9: Loop of length 1  (W)

/faculteit technologie management /faculteit wiskunde en informatica PM-31 Example 10: Loop of length 2  (W)

/faculteit technologie management /faculteit wiskunde en informatica PM-32 Example 11: Loop of length 3 No problem!  (W)

/faculteit technologie management /faculteit wiskunde en informatica PM-33 Example 12: Non-free-choice constructs may be harmful  (W)

/faculteit technologie management /faculteit wiskunde en informatica PM-34 Example 13: Free-choice is not enough Behaviorally equivalent!  (W)

/faculteit technologie management /faculteit wiskunde en informatica PM-35 Example 14: Example with “hidden” tasks ? Any suggestions?

/faculteit technologie management /faculteit wiskunde en informatica PM-36 Simplification! Behaviorally equivalent!  (W)

/faculteit technologie management /faculteit wiskunde en informatica PM-37 Results and issues Proven to be correct for a large class of processes. Notion of completeness is needed (direct successor relation). Can handle parallelism and time. Open issues: –noise –incomplete logs –data –advanced process patterns (hidden tasks, NFC, etc.) –behavioral equivalence On each of these issues we have some preliminary results.

/faculteit technologie management /faculteit wiskunde en informatica PM-38 Scientific competition J.E. Cook (and A.L. Wolf) – New Mexico State University/ University of Colorado, USA J. Herbst (and D. Karagiannis) – DaimlerChrysler, Germany R. Agrawal, D. Gunopulos, M.K. Maxeiner, K. Küspert, and F. Leymann – IBM, Germany G. Schimm – OFFIS, Germany S.Y. Hwang et al. – Sun Yeat-Sen University, Taiwan M. Golani and S.S. Pinter – IBM, Israel D. Grigori, F. Casati, et al. – HP, USA Our approach differs because we incorporate time and noise and take parallelism as a starting point.

/faculteit technologie management /faculteit wiskunde en informatica PM-39 Practical competition (ARIS PPM) IDS Scheer's ARIS Process Performance Manager. No process mining but interesting links with systems like SAP.

/faculteit technologie management /faculteit wiskunde en informatica PM-40 Tools/standards for process mining

/faculteit technologie management /faculteit wiskunde en informatica PM-41 Example: processing customer orders Example in Staffware: 7 tasks and all basic routing constructs

/faculteit technologie management /faculteit wiskunde en informatica PM-42 Fragment of Staffware log Case 21 Diractive Description Event User yyyy/mm/dd hh:mm Start 2003/02/05 15:00 Register order Processed To 2003/02/05 15:00 Register order Released By 2003/02/05 15:00 Prepare shipment Processed To 2003/02/05 15:00 (Re)send bill Processed To 2003/02/05 15:00 (Re)send bill Released By 2003/02/05 15:01 Receive payment Processed To 2003/02/05 15:01 Prepare shipment Released By 2003/02/05 15:01 Ship goods Processed To 2003/02/05 15:01 Ship goods Released By 2003/02/05 15:02 Receive payment Released By 2003/02/05 15:02 Archive order Processed To 2003/02/05 15:02 Archive order Released By 2003/02/05 15:02 Terminated 2003/02/05 15:02 Case 22 Diractive Description Event User yyyy/mm/dd hh:mm Start 2003/02/05 15:02 Register order Processed To 2003/02/05 15:02 Register order Released By 2003/02/05 15:02 Prepare shipment Processed To 2003/02/05 15:02

/faculteit technologie management /faculteit wiskunde en informatica PM-43 Fragment of XML file Case start :04 Register order :04

/faculteit technologie management /faculteit wiskunde en informatica PM-44 EMiT Focus on time and causality.

/faculteit technologie management /faculteit wiskunde en informatica PM-45 Thumb Focus on noise.

/faculteit technologie management /faculteit wiskunde en informatica PM-46 Thumb is able to deal with noise (D/F-graphs) causalit y no noise 10% noise

/faculteit technologie management /faculteit wiskunde en informatica PM-47 Real case: CJIB Processing of fines cases 99 different activities

/faculteit technologie management /faculteit wiskunde en informatica PM-48 Process in EMiT

/faculteit technologie management /faculteit wiskunde en informatica PM-49 Complete process model Validated by CJIB

/faculteit technologie management /faculteit wiskunde en informatica PM-50 SAP R/3

/faculteit technologie management /faculteit wiskunde en informatica PM-51 Conclusion Process mining is both a scientific and practical challenge. Preliminary results are promising. Challenging problems: –Finding the right data in real information systems. –Dealing with noise and incompleteness. –Dealing with advanced synchronization patterns. –Dealing with hidden tasks/behavioral equivalence.