Energie, Exergie, Cascades in de Ruimte H.C. Moll, OU-NW, Utrecht, 8 oktober 2011 VEM Energiesystemen, Exergie analyse, Cascades en Ruimtelijke integratie. Prof. dr. H. C. Moll, Centrum voor Energie en Milieukunde, IVEM, Rijksuniversiteit Groningen Presentatie 8 oktober 2011 Open Universiteit, Natuurwetenschappen Utrecht
Energie, Exergie, Cascades in de Ruimte H.C. Moll, OU-NW, Utrecht, 8 oktober 2011 VEM Energiesystemen, Exergie analyse, Cascades en Ruimtelijke integratie. Inhoud van de presentatie 1.Energie en energiesystemen. 2.Efficiëntie en exergie. 3.Energiecascades om exergie te besparen 4.Energie, exergiecascades en ruimtegebruik. 5.Toepassingen en voorbeelden
Energie, Exergie, Cascades in de Ruimte H.C. Moll, OU-NW, Utrecht, 8 oktober 2011 VEM The influence of energy use on the three spheres Economy Exploitation of energy sources generates economic benefits Energy is an essential resource for production and service delivery by all economic sectors Social Energy is directly and indirectly a source of health and wealth Ecological Extraction of energy may have several ecological effects Emissions due to energy use cause severe environmental problems The influence of energy use on Economy Exploitation of energy sources generates economic benefits Energy is an essential resource for production and service delivery by all economic sectors Social Energy is directly and indirectly a source of health and wealth Ecological Extraction of energy may have several ecological effects Emissions due to energy use cause severe environmental problems
Energie, Exergie, Cascades in de Ruimte H.C. Moll, OU-NW, Utrecht, 8 oktober 2011 VEM Some important energy issues. The most important environmental effect of present-day energy use is the emission of gases contributing to the increased radiative forcing of the atmosphere (the greenhouse effect) that causes global warming. (a) Carbondioxide and methane are the relevant emissions. (b) To almost stabilise the atmospheric concentrations the global use of energy from fossil carbon sources and the related emissions should be halved. (c) Therefore it is necessary that the energy requirements of lifestyles are diminished, carbon-neutral energy sources are developed, and carbon dioxide is removed from tail gas.
Energie, Exergie, Cascades in de Ruimte H.C. Moll, OU-NW, Utrecht, 8 oktober 2011 VEM Additional energy issues Global distribution of energy use World-wide average annual use of energy 65 GJ/capita Average annual use of energy in EU 150 GJ/capita Present-day trends of EU energy use Energy use is increasing for electricity and transport, and is at a stable level for heating and the total of production Slow development of renewable energy sources Waste combustion (including organic waste and biomass) is important. Wind energy is stimulated in the North. Solar energy (PV and solar collectors) is developing in the South.
Energie, Exergie, Cascades in de Ruimte H.C. Moll, OU-NW, Utrecht, 8 oktober 2011 VEM Het Nederlandse energiesysteem
Energie, Exergie, Cascades in de Ruimte H.C. Moll, OU-NW, Utrecht, 8 oktober 2011 VEM A typology of approaches to reduce non- sustainable energy use: The Trias Energetica. PREVENTION Use renewable sources maximally Use non renewable sources highly efficiently Consider FIRST the fundamental needs to be satisfied
Energie, Exergie, Cascades in de Ruimte H.C. Moll, OU-NW, Utrecht, 8 oktober 2011 VEM Energy system analysis Energy system: A social/economic system consisting out of installations, institutions, arrangements and practices that is able to meet the demand for an energy service. Examples The transport system The electricity system The heating system
Energie, Exergie, Cascades in de Ruimte H.C. Moll, OU-NW, Utrecht, 8 oktober 2011 VEM Some common features of energy systems. Diversity of ways to produce the supply and of installations associated with the production and distribution. Diversity of the demand of the final consumers of the energy service. Strategies to guarantee the sufficiency of the supply: the expected total demand should be met by the energy system. Strategies to guarantee the reliability of the supply: notwithstanding variation in the demand, the demand should be met at any time and at any place as much as possible.
Energie, Exergie, Cascades in de Ruimte H.C. Moll, OU-NW, Utrecht, 8 oktober 2011 VEM The transport energy system. motor fuel use by car for transporta tion fuel tank container with motor fuel tank stations delivering motor fuel refinery installat. producing motor fuel Sufficiency: total refinery capacity and aggregate capacity of tank stations Reliability: density of tank stations (maximal interval between stations) and maximal content of the fuel container
Energie, Exergie, Cascades in de Ruimte H.C. Moll, OU-NW, Utrecht, 8 oktober 2011 VEM Changing the transport energy system. Changing the transport fuel may require changes at all steps in the system (production, tank stations, storage in cars and use in cars). Past successful example lead-free gasoline. Failures until now: electrical cars and CNG cars. Changing the system in one step is feasible - reformulated gasoline, energy-efficient cars - but depends on the investment and replacement rate in that step. Complex changes may facilitated by a hybrid strategy: double storage (gasoline and LPG), a dual drive system (electric and engine-driven), or a conversion system may guarantee the sufficiency and the reliability of the system.
Energie, Exergie, Cascades in de Ruimte H.C. Moll, OU-NW, Utrecht, 8 oktober 2011 VEM The electricity system. Light, music, cleaning of cloths & dishes appliance s & light bulbs in the houses electricity grid: high voltage line, med. & low V. electricity producing and distribut. firms Sufficiency: total electricity production capacity and transport capacity of the grid Reliability: regulation strategy of electricity production and backup capacity in case of disturbances
Energie, Exergie, Cascades in de Ruimte H.C. Moll, OU-NW, Utrecht, 8 oktober 2011 VEM Specific features of the electricity system and possibilities for change. Diversity of electricity production methods: Regular sources coal, oil, natural gas, nuclear; other sources waste, wind, solar PV; Technologies gas turbine, steam turbine, combustion engines, combined heat and power systems. Technologies differ with regard to efficiency, to flexibility, and to the ability to regulate the output, and to predictability. The technology mix determines the overall reliability of the system.
Energie, Exergie, Cascades in de Ruimte H.C. Moll, OU-NW, Utrecht, 8 oktober 2011 VEM Heating system: energy balance of a house. House Transmission Ventilation Sun light Internal sources Losses Inputs Additional Supply of heat Heat Heater Heat pump energy distributor (gas, oil) from environment Additional Supply of heat
Energie, Exergie, Cascades in de Ruimte H.C. Moll, OU-NW, Utrecht, 8 oktober 2011 VEM Grenzen aan energiesysteem analyses Interactie tussen deelsystemen complex in de analyse Bij voorbeeld warmtepomp voor verwarming draait op elektriciteit, net als de elektrische auto Alleen de hoeveelheid energie wordt beschouwd, maar niet de kwaliteit. Een elektrische waterkoker is zeer energie efficiënt, maar gebruikt energie van hoge kwaliteit.
Energie, Exergie, Cascades in de Ruimte H.C. Moll, OU-NW, Utrecht, 8 oktober 2011 VEM Exergieverschillen en Temperatuur
Energie, Exergie, Cascades in de Ruimte H.C. Moll, OU-NW, Utrecht, 8 oktober 2011 VEM De Nederlandse energiehuishouding
Energie, Exergie, Cascades in de Ruimte H.C. Moll, OU-NW, Utrecht, 8 oktober 2011 VEM Eexergetische verbeterd energiesysteem
Energie, Exergie, Cascades in de Ruimte H.C. Moll, OU-NW, Utrecht, 8 oktober 2011 VEM Energie en warmte cascade principe
Energie, Exergie, Cascades in de Ruimte H.C. Moll, OU-NW, Utrecht, 8 oktober 2011 VEM Het toekomstige energiesysteem