2008-02-08M. Csanád, T. Csörg ő, M.I. Nagy Exact results in analytic hydrodynamics UTILIZING THE FLUID NATURE OF QGP M. Csanád, T. Csörg ő, M. I. Nagy.

Slides:



Advertisements
Similar presentations
M. Csanád at QM’04 Indication for deconfinement at RHIC M. Csanád, T. Csörgő, B. Lörstad and A. Ster (Budapest & Lund) Buda-Lund hydro fits to spectra.
Advertisements

Further development of the HydroKinetic Model (hHKM) and description of the RHIC and LHC A+A data Yu. M. Sinyukov Bogolyubov Institute for Theoretical.
Mass, Quark-number, Energy Dependence of v 2 and v 4 in Relativistic Nucleus- Nucleus Collisions Yan Lu University of Science and Technology of China Many.
R. Lacey, SUNY Stony Brook 1 Arkadij Taranenko Quark Matter 2006 November 13-20, Shanghai, China Nuclear Chemistry Group SUNY Stony Brook, USA PHENIX Studies.
R. Lacey, SUNY Stony Brook 1 Arkadij Taranenko Helmholtz International Summer School: “Dense Matter In Heavy Ion Collisions and Astrophysics” Dubna, Russia,
Elliptic flow of thermal photons in Au+Au collisions at 200GeV QNP2009 Beijing, Sep , 2009 F.M. Liu Central China Normal University, China T. Hirano.
Supported by DOE 11/22/2011 QGP viscosity at RHIC and LHC energies 1 Huichao Song 宋慧超 Seminar at the Interdisciplinary Center for Theoretical Study, USTC.
LP. Csernai, Sept. 4, 2001, Palaiseau FR 1 L.P. Csernai, C. Anderlik, V. Magas, D. Strottman.
Effects of Bulk Viscosity on p T -Spectra and Elliptic Flow Parameter Akihiko Monnai Department of Physics, The University of Tokyo, Japan Collaborator:
R. Lacey, SUNY Stony Brook 1 Arkadij Taranenko Winter Workshop on Nuclear Dynamics Big Sky, MT February 12-17,2007 Nuclear Chemistry Group SUNY Stony Brook,
CERN May Heavy Ion Collisions at the LHC Last Call for Predictions Initial conditions and space-time scales in relativistic heavy ion collisions.
A. ISMD 2003, Cracow Indication for RHIC M. Csanád, T. Csörgő, B. Lörstad and A. Ster (Budapest & Lund) Buda-Lund hydro fits to.
Marcus Bleicher, WWND 2008 A fully integrated (3+1) dimensional Hydro + Boltzmann Hybrid Approach Marcus Bleicher Institut für Theoretische Physik Goethe.
The Henryk Niewodniczański Institute of Nuclear Physics Polish Academy of Sciences Cracow, Poland Based on paper M.Ch., W. Florkowski nucl-th/ Characteristic.
WWND, San Diego1 Scaling Characteristics of Azimuthal Anisotropy at RHIC Michael Issah SUNY Stony Brook for the PHENIX Collaboration.
Perfect Fluid: flow measurements are described by ideal hydro Problem: all fluids have some viscosity -- can we measure it? I. Radial flow fluctuations:
Perfect Fluid: flow measurements are described by ideal hydro Problem: all fluids have some viscosity -- can we measure it? I. Transverse flow fluctuations:
Effects of Bulk Viscosity at Freezeout Akihiko Monnai Department of Physics, The University of Tokyo Collaborator: Tetsufumi Hirano Nagoya Mini-Workshop.
Viscous hydrodynamics DPF 2009 Huichao Song The Ohio State University Supported by DOE 07/30/2009 July 27-July 31, Detroit, MI with shear and bulk viscosity.
Behind QGP Investigating the matter of the early Universe Investigating the matter of the early Universe Is the form of this matter Quark Gluon Plasma?
Sept WPCF-2008 Initial conditions and space-time scales in relativistic heavy ion collisions Yu. Sinyukov, BITP, Kiev Based on: Yu.S., I. Karpenko,
Máté Csanád, Imre Májer Eötvös University Budapest WPCF 2011, Tokyo.
Perfect Fluid: flow measurements are described by ideal hydro Problem: all fluids have some viscosity -- can we measure it? I. Radial flow fluctuations:
Csörgő, T. 1 Observables and initial conditions from exact rotational hydro solutions T. Csörgő 1, I. Barna 1 and M.I. Nagy 1,3 1 MTA Wigner Research Center.
Flow fluctuation and event plane correlation from E-by-E Hydrodynamics and Transport Model LongGang Pang 1, Victor Roy 1,, Guang-You Qin 1, & Xin-Nian.
The effects of viscosity on hydrodynamical evolution of QGP 苏中乾 大连理工大学 Dalian University of Technology.
STRING PERCOLATION AND THE GLASMA C.Pajares Dept Particle Physics and IGFAE University Santiago de Compostela CERN The first heavy ion collisions at the.
Workshop for Particle Correlations and Femtoscopy 2011
Csörgő, T. 1 Observables and initial conditions from exact rotational hydro solutions T. Csörgő 1, I. Barna 1 and M.I. Nagy 1,3 1 MTA Wigner Research Center.
Jaipur February 2008 Quark Matter 2008 Initial conditions and space-time scales in relativistic heavy ion collisions Yu. Sinyukov, BITP, Kiev (with participation.
EXPERIMENTAL EVIDENCE FOR HADRONIC DECONFINEMENT In p-p Collisions at 1.8 TeV * L. Gutay - 1 * Phys. Lett. B528(2002)43-48 (FNAL, E-735 Collaboration Purdue,
Relativistic Hydrodynamics T. Csörgő (KFKI RMKI Budapest) new solutions with ellipsoidal symmetry Fireball hydrodynamics: Simple models work well at SPS.
Zagreb, Croatia, 2015/04/20 Csörgő, T. 1 New exact solutions of hydrodynamcs and search for the QCD Critical Point T. Csörgő 1,2 with I.Barna 1 and M.
Zimányi Winter School, 2013/12/05 Csörgő, T. 1 Observables and initial conditions from exact rotational hydro solutions T. Csörgő 1, I. Barna 1 and M.I.
Akihiko Monnai Department of Physics, The University of Tokyo Collaborator: Tetsufumi Hirano V iscous Hydrodynamic Expansion of the Quark- Gluon Plasma.
2+1 Relativistic hydrodynamics for heavy-ion collisions Mikołaj Chojnacki IFJ PAN NZ41.
1 Jeffery T. Mitchell – Quark Matter /17/12 The RHIC Beam Energy Scan Program: Results from the PHENIX Experiment Jeffery T. Mitchell Brookhaven.
Flow fluctuation and event plane correlation from E-by-E Hydrodynamics and Transport Model Victor Roy Central China Normal University, Wuhan, China Collaborators.
Koichi Murase A, Tetsufumi Hirano B The University of Tokyo A, Sophia University B Hydrodynamic fluctuations and dissipation in an integrated dynamical.
Does HBT interferometry probe thermalization? Clément Gombeaud, Tuomas Lappi and J-Y Ollitrault IPhT Saclay WPCF 2009, CERN, October 16, 2009.
Partial thermalization, a key ingredient of the HBT Puzzle Clément Gombeaud CEA/Saclay-CNRS Quark-Matter 09, April 09.
M. Csanád, T. Csörg ő, M.I. Nagy New analytic results in hydrodynamics UTILIZING THE FLUID NATURE OF QGP M. Csanád, T. Csörg ő, M. I. Nagy ELTE.
T. Csörgő 1,2 Scaling properties of elliptic flow in nearly perfect fluids 1 MTA KFKI RMKI, Budapest, Hungary 2 Department of.
WPCF-2005, Kromirez A. Ster Hungary 1 Comparison of emission functions in h+p, p+p, d+A, A+B reactions A. Ster 1,2, T. Csörgő 2 1 KFKI-RMKI, 2 KFKI-MFA,
Two freeze-out model for the hadrons produced in the Relativistic Heavy-Ion Collisions. New Frontiers in QCD 28 Oct, 2011, Yonsei Univ., Seoul, Korea Suk.
Heavy-Ion Physics - Hydrodynamic Approach Introduction Hydrodynamic aspect Observables explained Recombination model Summary 전남대 이강석 HIM
Relativistic Theory of Hydrodynamic Fluctuations Joe Kapusta University of Minnesota Nuclear Physics Seminar October 21, 2011 Collaborators: Berndt Muller.
R. Lednicky: Joint Institute for Nuclear Research, Dubna, Russia I.P. Lokhtin, A.M. Snigirev, L.V. Malinina: Moscow State University, Institute of Nuclear.
Roy A. Lacey, Stony Brook, ISMD, Kromĕříž, Roy A. Lacey What do we learn from Correlation measurements at RHIC.
Hyperon Polarization in Heavy ion Collisions C. C. Barros Jr. Universidade Federal de Santa Catarina Brasil Strangeness in Quark Matter 2013 University.
SQM’08 1 An explorer for the shear viscosity in the formed matter at relativistic heavy ion collisions Wu Yuanfang IOPP, Huazhong Normal University,
Zimányi Winter School, ELTE, 6/12/ Csörgő T. Review of the first results from the RHIC Beam Energy Scan Csörgő, Tamás Wigner Research Centre for.
Understanding the rapidity dependence of v 2 and HBT at RHIC M. Csanád (Eötvös University, Budapest) WPCF 2005 August 15-17, Kromeriz.
Andras. Ster, RMKI, Hungary ZIMANYI-SCHOOL’09, Budapest, 01/12/ Azimuthally Sensitive Buda-Lund Hydrodynamic Model and Fits to Spectra, Elliptic.
Particle emission in hydrodynamic picture of ultra-relativistic heavy ion collisions Yu. Karpenko Bogolyubov Institute for Theoretical Physics and Kiev.
Flow and Dissipation in Ultrarelativistic Heavy Ion Collisions September 16 th 2009, ECT* Italy Akihiko Monnai Department of Physics, The University of.
3 rd Joint Meeting of the Nuclear Physics Divisions of the APS and the JPS October 15 th 2009, Hawaii USA Akihiko Monnai Department of Physics, The University.
Helen Caines Yale University Strasbourg - May 2006 Strangeness and entropy.
A generalized Buda-Lund model M. Csanád, T. Csörgő and B. Lörstad (Budapest & Lund) Buda-Lund model for ellipsoidally symmetric systems and it’s comparison.
A. Ster A. Ster 1, T. Csörgő 1,2, M. Csanád 3, B. Lörstad 4, B. Tomasik 5 Oscillating HBT radii and the time evolution of the source 200 GeV Au+Au data.
Akihiko Monnai Department of Physics, The University of Tokyo Collaborator: Tetsufumi Hirano V iscous Hydrodynamic Evolution with Non-Boost Invariant Flow.
ICPAQGP 2010 Goa, Dec. 6-10, Percolation & Deconfinement Brijesh K Srivastava Department of Physics Purdue University USA.
WPCF 2015, Warsaw, 2015/11/06 Csörgő, T. for Nagy, M 1 Observables and initial conditions for rotating and expanding fireballs T. Csörgő 1,2, I.Barna 1.
Hydro + Cascade Model at RHIC
New solutions of fireball hydrodynamics with shear and bulk viscosity
Bulk viscosity in heavy ion collisions
Effects of Bulk Viscosity at Freezeout
Effects of Bulk Viscosity on pT Spectra and Elliptic Flow Coefficients
The 1st International 9421 Conference
Status of AdS/QCD SangJin Sin
Presentation transcript:

M. Csanád, T. Csörg ő, M.I. Nagy Exact results in analytic hydrodynamics UTILIZING THE FLUID NATURE OF QGP M. Csanád, T. Csörg ő, M. I. Nagy ELTE MTA KFKI RMKI Budapest, Hungary Quark Matter 2008, Jaipur, Rajastan, India February 8, 2008

M. Csanád, T. Csörg ő, M.I. Nagy High temperature superfluidity at RHIC! All “realistic” hydrodynamic calculations for RHIC fluids to date have assumed zero viscosity  = 0 →  perfect fluid a conjectured quantum limit: P. Kovtun, D.T. Son, A.O. Starinets, hep-th/ How “ordinary” fluids compare to this limit? (4  ) η /s > 10 P. KovtunD.T. SonA.O. Starinetshep-th/ RHIC’s perfect fluid (4  ) η /s ~1 ! T > 2 Terakelvin The hottest & most perfect fluid ever made… (4  R. Lacey et al., Phys.Rev.Lett.98:092301,2007

M. Csanád, T. Csörg ő, M.I. Nagy Relativistic hydrodynamics Energy-momentum tensor: Relativistic Euler equation: Energy conservation: Charge conservation: Consequence is entropy conservation:

M. Csanád, T. Csörg ő, M.I. Nagy Context Renowned exact solutions Landau-Khalatnikov solution : dn/dy ~ Gaussian Hwa solution (PRD 10, 2260 (1974)) - Bjorken  0 estimate (1983) Chiu, Sudarshan and Wang: plateaux Baym, Friman, Blaizot, Soyeur and Czyz: finite size parameter  Srivastava, Alam, Chakrabarty, Raha and Sinha: dn/dy ~ Gaussian Revival of interest: Buda-Lund model + exact solutions, Biró, Karpenko+Sinyukov, Pratt (2007), Bialas+Janik+Peschanski, Borsch+Zhdanov (2007) New simple solutions Evaluation of measurables Rapidity distribution Advanced initial energy density HBT radii Advanced life-time estimation

M. Csanád, T. Csörg ő, M.I. Nagy Goal Need for solutions that are: explicit simple accelerating relativistic realistic / compatible with the data : lattice QCD EoS ellipsoidal symmetry (spectra, v 2, v 4, HBT) finite dn/dy Report on a new class that satisfies these criteria but not simultaneously arXiv: v1 [nucl-th] PRC(2008) in press

M. Csanád, T. Csörg ő, M.I. Nagy Self-similar, ellipsoidal solutions Publication (for example): T. Csörg ő, L.P.Csernai, Y. Hama, T. Kodama, Heavy Ion Phys. A 21 (2004) 73 3D spherically symmetric HUBBLE flow: No acceleration : Define a scaling variable for self-similarly expanding ellipsoids: EoS : (massive) ideal gas Scaling function (s) can be chosen freely. Shear and bulk viscous corrections in NR limit : known analytically.

M. Csanád, T. Csörg ő, M.I. Nagy New, simple, exact solutions If  = d = 1, general solution is obtained, for initial conditions. It is STABLE ! ARBITRARY initial conditions. It is STABLE ! Possible cases (one row of the table is one solution): Hwa-Bjorken, Buda-Lund type New, accelerating, d dimension d dimensional with p=p( ,  ) (thanks T. S. Biró) Special EoS, but general velocity Nagy,CsT, Csanád: Nagy,CsT, Csanád: arXiv: v1

M. Csanád, T. Csörg ő, M.I. Nagy New simple solutions Different final states from similar initial states are reached by varying

M. Csanád, T. Csörg ő, M.I. Nagy New simple solutions Similar final states from different initial states are reached by varying

M. Csanád, T. Csörg ő, M.I. Nagy Rapidity distribution Rapidity distribution from the 1+1 dimensional solution, for  > 1. T f : slope parameter.

M. Csanád, T. Csörg ő, M.I. Nagy Pseudorapidity distributions BRAHMS data fitted with the analytic formula of Additionally: y  η transformation

M. Csanád, T. Csörg ő, M.I. Nagy BRAHMS rapidity distribution BRAHMS dn/dy data fitted with the analytic formula

M. Csanád, T. Csörg ő, M.I. Nagy Advanced energy density estimate Fit result:  > 1 Flows accelerate: do work initial energy density is higher than Bjorken’s Work and acceleration. FYI: For  > 1 (accelerating) flows, both factors > 1

M. Csanád, T. Csörg ő, M.I. Nagy Advanced energy density estimate Correction depends on timescales, dependence is: With a typical  f /  0 of ~8-10, one gets a correction With a typical  f /  0 of ~8-10, one gets a correction factor of 2!

M. Csanád, T. Csörg ő, M.I. Nagy Conjecture: EoS dependence of  0 Four constraints 1)  Bj is independent of EoS (  = 1 case) 2) c s 2 = 1 case is solved for any  > 0.5 2) c s 2 = 1 case is solved for any  > 0.5 Corrections due to respect these limits. 3) c s 2 dependence of  is known 4) Numerical hydro results Conjectured formula – given by the principle of Occam’s razor: Using = 1.18, c s = 0.35,  f /  0 = 10, we get c s /  Bj = 2.9 Using = 1.18, c s = 0.35,  f /  0 = 10, we get  c s /  Bj = 2.9 in 200 GeV, 0-5 % Au+Au at RHIC  0 = 14.5 GeV/fm 3 in 200 GeV, 0-5 % Au+Au at RHIC

M. Csanád, T. Csörg ő, M.I. Nagy Advanced life-time estimate Life-time estimation: for Hwa-Bjorken type of flows Makhlin & Sinyukov, Z. Phys. C 39, 69 (1988) Underestimates lifetime (Renk, CsT, Wiedemann, Pratt, … ) Advanced life-time estimate: width of dn/dy related to acceleration and work At RHIC energies: correction is about +20%

M. Csanád, T. Csörg ő, M.I. Nagy Conclusions Explicit simple accelerating relativistic hydrodynamics Analytic (approximate) calculation of observables Realistic rapidity distributions; BRAHMS data well described No go theorem: same final states, different initial states New estimate of initial energy density:  c /  Bj ~ RHIC dependence on c s estimated,  c /  Bj ~ 3 for c s = 0.35 Estimated work effects on lifetime: ~ 20% RHIC A lot to do … more general EoS less symmetry, ellipsoidal solutions asymptotically Hubble-like flows

M. Csanád, T. Csörg ő, M.I. Nagy New simple solutions in 1+D dim Fluid trajectories of the 1+D dimenisonal new solution THANK YOU!

M. Csanád, T. Csörg ő, M.I. Nagy Back-up Slides

M. Csanád, T. Csörg ő, M.I. Nagy How Perfect is Perfect? Measure η /s ! Damping (flow, fluctuations, heavy quark motion) ~ η /s FLOW: Has the QCD Critical Point Been Signaled by Observations at RHIC?, R. Lacey et al., Phys.Rev.Lett.98:092301,2007 (nucl-ex/ )nucl-ex/ The Centrality dependence of Elliptic flow, the Hydrodynamic Limit, and the Viscosity of Hot QCD, H.-J. Drescher et al., (arXiv: )arXiv: FLUCTUATIONS: Measuring Shear Viscosity Using Transverse Momentum Correlations in Relativistic Nuclear Collisions, S. Gavin and M. Abdel-Aziz, Phys.Rev.Lett.97:162302,2006 (nucl-th/ )nucl-th/ DRAG, FLOW: Energy Loss and Flow of Heavy Quarks in Au+Au Collisions at √s NN = 200 GeV (PHENIX Collaboration), A. Adare et al., Phys.Rev.Lett.98:172301,2007 (nucl-ex/ )nucl-ex/ CHARM!CHARM!

M. Csanád, T. Csörg ő, M.I. Nagy Landau-Khalatnikov solution Publications: L.D. Landau, Izv. Acad. Nauk SSSR 81 (1953) 51 I.M. Khalatnikov, Zhur. Eksp.Teor.Fiz. 27 (1954) 529 L.D.Landau and S.Z.Belenkij, Usp. Fiz. Nauk 56 (1955) 309 Implicit 1D solution with approx. Gaussian rapidity distribution Basic relations: Unknown variables: Auxiliary function: Expression of is a true „tour de force”

M. Csanád, T. Csörg ő, M.I. Nagy Landau-Khalatnikov solution Temperature distribution (animation courtesy of T. Kodama) „Tour de force” implicit solution: t=t(T,v), r=r(T,v)

M. Csanád, T. Csörg ő, M.I. Nagy Hwa-Bjorken solution The Hwa-Bjorken solution / Rindler coordinates

M. Csanád, T. Csörg ő, M.I. Nagy Hwa-Bjorken solution The Hwa-Bjorken solution / Temperature evolution

M. Csanád, T. Csörg ő, M.I. Nagy Bialas-Janik-Peschanski solution Publications: A. Bialas, R. Janik, R. Peschanski, arXiv: v1 Accelerating, expanding 1D solution interpolates between Landau and Bjorken Generalized Rindler coordinates:

M. Csanád, T. Csörg ő, M.I. Nagy Hwa-Bjorken solution Publications: R.C. Hwa, Phys. Rev. D10, 2260 (1974) J.D. Bjorken, Phys. Rev. D27, 40(1983) Accelerationless, expanding 1D simple boost-invariant solution Rindler coordinates: Boost-invariance (valid for asymptotically high energies): depends on EoS, e.g.

M. Csanád, T. Csörg ő, M.I. Nagy New simple solutions in 1+d dim The fluid lines (red) and the pseudo-orthogonal freeze-out surface (black)

M. Csanád, T. Csörg ő, M.I. Nagy Rapidity distribution Rapidity distribution from the 1+1 dimensional solution, for.

M. Csanád, T. Csörg ő, M.I. Nagy 1 st milestone: new phenomena Suppression of high p t particle production in Au+Au collisions at RHIC

M. Csanád, T. Csörg ő, M.I. Nagy 2 nd milestone: new form of matter d+Au: no suppression Its not the nuclear effect on the structure functions Au+Au: new form of matter !

M. Csanád, T. Csörg ő, M.I. Nagy 3 rd milestone: Top Physics Story PHENIX White Paper: second most cited in nucl-ex during 2006

M. Csanád, T. Csörg ő, M.I. Nagy Strange and even charm quarks participate in the flow v 2 for the φ follows that of other mesons v 2 for the D follows that of other mesons 4 th Milestone: A fluid of quarks