Nervous System.

Slides:



Advertisements
Similar presentations
Topic Nerves.
Advertisements

The Electrical Nature of Nerves
Lecture packet 9 Reading: Chapter 7
Nervous System Communication. Kid Concussions In The News.
Nervous systems. Keywords (reading p ) Nervous system functions Structure of a neuron Sensory, motor, inter- neurons Membrane potential Sodium.
Neurons and the Nervous System
Neurons & Nervous Systems
The Nervous System Chapters 39 & 40. Overview Three overlapping functions: sensory input, integration, and motor output Sensory input – the conduction.
Study guide…part 1 What are the three types of neurons? What is the structure of a neuron? How does saltatory conduction change the speed of the impulse?
Neurons Structure and Conduction of a Nerve Impulse.
Chapter 37 Nervous System.
David Sadava H. Craig Heller Gordon H. Orians William K. Purves David M. Hillis Biologia.blu C – Il corpo umano Neurons and Nervous Tissue.
Chapter The anatomy of a neuron. The mechanisms of impulse transmission in a neuron. The process that leads to release of neurotransmitter, and.
1. Contrast the functions of B cells and T cells. 2. What are memory cells? 3. How do vaccines work? 4. How does HIV affect the immune system?
Nerve Signal Transmission Raise your right hand. Easy, right? You don’t even have to think twice and your right arm is moving…. But what makes it happen???
The Nervous System. To return to the chapter summary click escape or close this document. Human Nervous System.
CHAPTER 28 Nervous System 28.1 Nervous systems receive sensory input, interpret it, and send out appropriate commands The nervous system has three interconnected.
Human Anatomy & Physiology NERVOUS SYSTEM Biology – Chapter 35 1.
Nervous System.
Neurons, Synapses and Signaling
Overview of Neurons, Synapses & Nervous System
Chapter 48 Neurons, Synapses, and Signaling. Copyright © 2008 Pearson Education, Inc., publishing as Pearson Benjamin Cummings Overview: Lines of Communication.
Copyright © 2008 Pearson Education, Inc., publishing as Pearson Benjamin Cummings PowerPoint ® Lecture Presentations for Biology Eighth Edition Neil Campbell.
The Nervous System Chapter 48 and Section 49.2 Biology – Campbell Reece.
Nervous System and Senses. Neural Activity The Neuron Which direction does a signal travel down a neuron? What do you think a “signal” is? How do you.
Body Systems Nervous System. Nervous System Functions  Sensory input – sense organs, receptors, –afferent neurons  Integration – Central Nervous System(CNS)
Nervous System & Neurons
Neuron organization and structure reflect function in information transfer The squid possesses extremely large nerve cells and is a good model for studying.
Lecture #21Date ______ n Chapter 48 ~ Nervous System.
The Nervous System Neuron –Cell body; Dendrites; Axon Three general groups of neurons –Sensory neurons (afferent or receptor) Receive the initial stimulus.
LectureDate ______ Chapter 48 ~ Nervous System. Nervous systems Effector cells –muscle or gland cells Nerves –bundles of neurons wrapped in connective.
Chapter 48 ~ Nervous System. The Nervous System Neurons Glial cells Soma Axon Dendrite Synapse Neurotransmitters Action potential Motor neurons Interneurons.
Copyright © 2009 Pearson Education, Inc. Neurons and Neurological Cells: The Cells of the Nervous System  The nervous system  Integrates and coordinates.
Nervous systems n Effector cells~ muscle or gland cells n Nerves~ bundles of neurons wrapped in connective tissue n Central nervous system (CNS)~ brain.
Neurons, Synapses, & Signaling Campbell and Reece Chapter 48.
Essential knowledge 3.E.2: Animals have nervous systems that detect external and internal signals, transmit and integrate information, and produce responses.
NERVOUS SYSTEM CH 48. NERVOUS SYSTEM Central Nervous system –  Brain & spinal cord Peripheral nervous system- nerves that communicate motor & sensory.
Chapter 48 ~ Nervous System
The Nervous System Chapter 11.
Nervous System IB Biology. Nervous System In order to survive and reproduce an organism must respond rapidly and appropriately to environmental stimuli.
Nervous System Transmission of signals for communication and for coordination of body systems.
Susan Capasso, Ed.D., CGC St. Vincent’s College Suggested Lecture Presentation Copyright © 2009 Pearson Education, Inc. Chapter 7 Neurons: The Matter of.
8.2 Structures and Processes of the Nervous System
Chapter 31 The Nervous System I. The Nervous System A. Purpose 1. controls and coordinates functions throughout the body 2. responds to internal and.
Copyright © 2008 Pearson Education, Inc., publishing as Pearson Benjamin Cummings Ch 48 – Neurons, Synapses, and Signaling Neurons transfer information.
Ch.48 Nervous System. I. Functions –A. Sensory input –B. Integration – interpretation of input –C. Motor output- involves effector cells like the muscles.
Chapter 17 The nervous system.
Nervous Tissue Chapter 9.
Neurons, Synapses, and Signaling
The Nervous System. Functions of the Nervous System Figure 7.1.
Nervous System Transmission of signals for communication and for coordination of body systems.
Neurons, Synapses, & Signaling Campbell and Reece Chapter 48.
Ch. 9 Test Review Nervous System Central Nervous System Peripheral Nervous System.
3.E.2 Nervous System Animals have nervous systems that detect external and internal signals, transmit and integrate information, and produce responses.
Click on a lesson name to select. Chapter 33 Nervous System Section 1: Structure of the Nervous System Section 2: Organization of the Nervous System.
The Nervous System. Central Nervous System (CNS) – brain and spinal cord Peripheral Nervous System (PNS) – nerves that communicate to the rest of the.
Overview of the Nervous System Neurons and Neuroglia Physiology of Nerve Conduction Synapse and Synaptic Transmission.
Chapter 28 Nervous system. NERVOUS SYSTEM STRUCTURE AND FUNCTION © 2012 Pearson Education, Inc.
Neurons and Synapses 6.5. The Nervous System Composed of cells called neurons. These are typically elongated cells that can carry electrical impulses.
Fig. 34-1, p.572. Don’t Do Drugs read the intro to ch 34 p.573a.
Nervous System
3.E.2 Nervous System Animals have nervous systems that detect external and internal signals, transmit and integrate information, and produce responses.
Chapter 48: Nervous System
Chapter 48 Nervous System
Nervous System.
The Nervous System YuHui Lee Cindy Tsai.
Neurons, Synapses, and Signaling
Chapters 48 & 49 Campbell Biology – 9th ed.
Chapter 48 – Nervous System
Nervous system.
Presentation transcript:

Nervous System

Young Woman or Old? That depends on your interpretation. Young people tend to see a young girl; older people, an elderly lady. With effort, you can switch from one to the other: the young woman's chin becomes the old woman's nose; the old woman's mouth, a band on the neck of the young woman.

Words and Colors Read the image aloud--but rather than reading the words, say the color of the ink that was used to write each word. It's not easy; the written words have a suprisingly strong influence over the actual color.

Faces or Vases? The answer depends on what you perceive as the background--the black spaces or the white. Photographer Zeke Berman has created this intriguing collage using silhouettes of real people. "Goblet Portraits" by Zeke Berman ©1978

Do you see the Phantom Spots? You may see spots where the white lines intersect, but if you try looking right at one, it will disappear. The spots, of course, aren't really there. They're caused by the way your eyes respond to light and dark areas. When an area is surround by light, your eye compensates by "turning down" the brightness a bit, making you see darkened blobs. In this grid, the areas surrounded by the most white are at the intersections of the white lines. Since this phenomenon works best in your peripheral vision, the spots disappear when you look right at them.

VISUAL ACUITY: A person who has sufficient visual acuity should see the number twelve in the circle on the left whether or not they have normal color vision.

COLOR BLINDNESS: A person with normal color vision sees a number seven in the circle on the left. Those who are color blind usually do not see any number at all.

RED-GREEN COLORBLINDNESS People with red-green color blindness see either a three or nothing at all. Those with normal color vision see an 8.

PROTANOPIA & DEUTERANOPIA Those with normal vision see the number thirty-five in the circle above. A person with protanopia sees only he number five. A person with deuteranopia sees the number three. People who are partially color blind will see both numbers but one more distinctly than the other.

Test for Macular Problems: Amsler Grid Make sure your room lights are on. Put on your reading glasses if you wear them, and test each eye separately (cover one eye at a time). Concentrate on the center spot . If the lines appear wavy, or if their are spots or holes in the grid, then you may have a macular problem

Complimentary Colors: Study complimentary colors using the ExploreSciences shockwave experiment. With one eye covered, stare at the center of the diagram below with the other eye for 30 seconds. Then click on the flag and see what you see with the same eye (keep the other one covered.)

Complimentary Colors

Nervous systems Nerves~ bundles of neurons wrapped in connective tissue Central nervous system (CNS)~ brain and spinal cord Peripheral nervous system (PNS)~ sensory and motor neurons

Structural Unit of Nervous System Neuron~ structural and functional unit Cell body~ nucelus and organelles Dendrites~ impulses from tips to neuron Axons~ impulses toward tips Myelin sheath~ supporting, insulating layer Schwann cells~PNS support cells Synaptic terminals~ neurotransmitter releaser Synapse~ neuron junction

Simple Nerve Circuit Sensory neuron: convey information to spinal cord Interneurons: information integration Motor neurons: convey signals to effector cell (muscle or gland) Reflex: simple response; sensory to motor neurons Ganglion (ganglia): cluster of nerve cell bodies in the PNS Supporting cells/glia: nonconductiong cell that provides support, insulation, and protection

Reflex Action A sense neuron is stimulated The cell body sends a signal to the axon and then to an interneuron The signal then goes to the brain 4. The brain sends a signal to the motor neuron 5. The motor neuron causes the muscle to contract

Sensory neurons, interneurons, and motor neurons The pathways of impulses from dendrite to cell body to axon of sensory neurons, interneurons, and motor neurons link the chains of events that occur in a reflex action. Similar paths of neural connections lead to the brain, where the sensations become conscious and conscious actions are initiated in response to external stimuli. Students might also trace the path of the neural connections as the sensation becomes conscious and a response to the external stimulus is initiated. Students should also be able to identify gray and white matter in the central nervous system.

Neural signaling, I Membrane potential (voltage differences across the plasma membrane) Intracellular/extracellular ionic concentration difference K+ diffuses out (Na+ in); large anions cannot follow….selective permeability of the plasma membrane Net negative charge of about -70mV

Transmission of Nerve Impulses Transmission of nerve impulses involves an electrochemical “action potential” generated by gated ion channels in the membrane that make use of the countervailing gradients of sodium and potassium ions across the membrane. Potassium ion concentration is high inside cells and low outside; sodium ion concentration is the opposite.

Nerve Impulses continued The sodium and potassium ion concentration gradients are restored by an active transport system, a pump that exchanges sodium and potassium ions across the membrane and uses ATP hydrolysis as a source of free energy. The re-lease of neurotransmitter chemicals from the axon terminal at the synapse may initiate an action potential in an adjacent neuron, propagating the impulse to a new cell.

Multiple Sclerosis Is a disease of the nervous system It is caused by hardening of the myelin sheath of the axons Due to the hardening of the axons the nerve impulse travels slower Symptoms include weakness, loss of coordination, problems with vision and speech

Neural signaling, IV “Travel” of the action potential is self-propagating Regeneration of “new” action potentials only after refractory period Forward direction only Action potential speed: 1-Axon diameter (larger = faster; 100m/sec) 2-Nodes of Ranvier (concentration of ion channels); saltatory conduction; 150m/sec

Synaptic communication Presynaptic cell: transmitting cell Postsynaptic cell: receiving cell Synaptic cleft: separation gap Synaptic vesicles: neurotransmitter releasers Ca+ influx: caused by action potential; vesicles fuse with presynaptic membrane and release…. Neurotransmitter

The cellular and molecular basis of muscle contraction Controlled by calcium ions and powered by hydrolysis of ATP, actin and myosin filaments in a sarcomere generate movement in muscles. Striated muscle fibers reflect the filamentous makeup and contraction state evidenced by the banding patterns of those fibers. A sketch of the sarcomere can be used to indicate the functions of the actin and myosin filaments and the role of calcium ions and ATP in muscle contraction.

Neurotransmitters Acetylcholine (most common) •skeletal muscle Biogenic amines (derived from amino acids) •norepinephrine •dopamine •serotonin Amino acids Neuropeptides (short chains of amino acids) •endorphin

Vertebrate PNS Cranial nerves (brain origin) Spinal nerves (spine origin) Sensory division Motor division •somatic system voluntary, conscious control •autonomic system √parasympathetic conservation of energy √sympathetic increase energy consumption

The Vertebrate Brain Forebrain •cerebrum~memory, learning, emotion •cerebral cortex~sensory and motor nerve cell bodies •corpus callosum~connects left and right hemispheres •thalamus; hypothalamus Midbrain •inferior (auditory) and superior (visual) colliculi Hindbrain •cerebellum~coordination of movement •medulla oblongata/ pons~autonomic, homeostatic functions