Trigonometry Math is beautiful. Is it? Well, if its not nice, than its damn sure of a very B.I.G. *HELP*.

Slides:



Advertisements
Similar presentations
Trigonometric Robot Workbook Version 0.1 Prepared by Phil Bourke Tipperary Institute.
Advertisements

Lesson 7-3 The Sine and Cosine Functions. Objective:
Honors Geometry Section 10.3 Trigonometry on the Unit Circle
Objective: Convert between degrees and radians. Draw angles in standard form. Warm up Fill in the blanks. An angle is formed by two_____________ that have.
Angles and Radian Measure Section 4.1. Objectives Estimate the radian measure of an angle shown in a picture. Find a point on the unit circle given one.
Summer School 2007B. Rossetto1 Trigonometry  Definitions  H.. P O Let OP = OH’ = r > 0, a positive length. Give the definition of: P’. H’. r r.
Radians In a circle of radius 1 unit, the angle  subtended at the centre of the circle by the arc of length 1 unit is called 1 radian, written as 1 rad.
Definition of Trigonometric Functions With trigonometric ratios of acute angles in triangles, we are limited to angles between 0 and 90 degrees. We now.
Trigonometry Jeopardy Radians Degrees Misc Trig Misc.
Radian Measure Angles can be measured 3 ways: 1) Degrees (360 parts to a rotation) 1) Degrees (360 parts to a rotation) used for triangle applications.
Trigonometry (RIGHT TRIANGLES).
Circumference & Arc Length. Circumference The distance around a circle C = 2r or d.
Section 10.1 Polar Coordinates.
Chapter 13 Section 3 Radian Measure.
6.1.2 Angles. Converting to degrees Angles in radian measure do not always convert to angles in degrees without decimals, we must convert the decimal.
Section 5.2 – Central Angles and Arcs Objective To find the length of an arc, given the central angle Glossary Terms Arc – a part of a circle Central angle.
Grade 12 Trigonometry Trig Definitions. Radian Measure Recall, in the trigonometry powerpoint, I said that Rad is Bad. We will finally learn what a Radian.
Radian Measure. Many things can be measured using different units.
4.3 Right Triangle Trigonometry Pg. 484 # 6-16 (even), (even), (even) –Use right triangles to evaluate trigonometric functions –Find function.
1 A unit circle has its center at the origin and a radius of 1 unit. 3.3 Definition III: Circular Functions.
Introduction to Unit Circle Trigonometry 1. The Unit Circle on the Coordinate Plane (1,0) (0,1) (-1,0) (0, -1) Quadrant I X – Pos Y - Pos X Y Radius =
4.2 Day 1 Trigonometric Functions on the Unit Circle Pg. 472 # 6-10 evens, evens, 46, 54, 56, 60 For each question (except the 0 o, 90 o, 180 o,
Trigonometry The science of studying angle measure.
Section 13.6a The Unit Circle.
TOP 10 Missed Mid-Unit Quiz Questions. Use the given function values and trigonometric identities to find the indicated trig functions. Cot and Cos 1.Csc.
Warm-Up Find the following. 1.) sin 30 ◦ 2.) cos 270 ◦ 3.) cos 135 ◦
Trigonometry #3 Radian Measures. Converting Degrees to Radians Angle measure In degrees.
30º 60º 1 45º 1 30º 60º 1 Do Now: Find the lengths of the legs of each triangle.
Introduction to the Unit Circle in Trigonometry. What is the Unit Circle? Definition: A unit circle is a circle that has a radius of 1. Typically, especially.
Introduction to Trig Unit Unit Circle And Radians.
Aim: How do we define radians and develop the formula Do Now: 1. The radius of a circle is 1. Find, in terms of the circumference. 2. What units do we.
13-3 Radian Measure Today’s Objective: I can measure an angle in radians.
Terms to know going forward Angle: 2 rays an initial side and a terminal side. Initial side Terminal side Positive angle goes counter clockwise. Negative.
Do Now: Graph the equation: X 2 + y 2 = 1 Draw and label the special right triangles What happens when the hypotenuse of each triangle equals 1?
TRIGONOMETRY - Angles Trigonometry began as a study of the right triangle. It was discovered that certain relationships between the sides of the right.
Practice Degree ____ Radian _____ (, ) I I III IV Degree ____ Radian _____ (, ) Degree ____ Radian _____ (, ) Degree ____ Radian _____ (, )
And because we are dealing with the unit circle here, we can say that for this special case, Remember:
Arc Length Start with the formula for radian measure … … and multiply both sides by r to get … Arc length = radius times angle measure in radians.
Pg. 362 Homework Pg. 362#56 – 60 Pg. 335#29 – 44, 49, 50 Memorize all identities and angles, etc!! #40
4.3 Trigonometry Extended: The Circular Functions
Upward Bound Math and Science PRECALCULUS. Slope of Line The Slope of a Line is give by the formula Find the slope of the line (-1,4) and (2,-2)
Right Triangles Consider the following right triangle.
Trigonometry Exact Value Memory Quiz A Trigonometry Exact Value Memory Quiz A.
Angles and Their Measure Objective: To define the measure of an angle and to relate radians and degrees.
Slide 1-1 The Six Trigonometric Functions Chapter 1.
How do we convert angle measures between degrees and radians?
Radian Measure One radian is the measure of a central angle of a circle that intercepts an arc whose length equals a radius of the circle. What does that.
Trigonometry Ratios.
Chapter 4-2: Lengths of Arcs and Areas of Sectors.
2/29/2016Math 2 Honors - Santowski1 Lesson 45 – The Unit Circle Math 2 Honors - Santowski.
Ch 14 Trigonometry!!. Ch 14 Trigonometry!! 14.1 The unit circle Circumference Arc length Central angle In Geometry, our definition of an angle was the.
Unit Circle ( √3, 1 ) 2 2 ( 1, √3 ) 2 2 ( √2, √2 ) ˚ 45˚ 60˚
Trigonometry Section 7.1 Find measures of angles and coterminal angle in degrees and radians Trigonometry means “triangle measurement”. There are two types.
Holt McDougal Algebra The Unit Circle 10-3 The Unit Circle Holt Algebra 2 Warm Up Warm Up Lesson Presentation Lesson Presentation Lesson Quiz Lesson.
Holt Geometry 3-1 Lines and Angles  Paper for notes  Pearson 13.3.
8-3 Trigonometry Part 2: Inverse Trigonometric Functions.
Trigonometry Section 7.3 Define the sine and cosine functions Note: The value of the sine and cosine functions depend upon the quadrant in which the terminal.
14.1 The Unit Circle Part 2. When measuring in radians, we are finding a distance ____ the circle. This is called. What is the distance around a circle?
Holt McDougal Algebra The Unit Circle Toolbox p. 947(1-34) 13.3a 13.3b radian degrees unit circle.
EQ: How do you convert from degrees to radians and from radians to degrees? Demonstrated in writing in performance task (Unit 5 Task 2). WARM UP Create.
TRIGONOMETRY AND THE UNIT CIRCLE SEC LEQ: How can you use a unit circle to find trigonometric values?
Objective: Use unit circle to define trigonometric functions. Even and odd trig functions. Warm up 1.Find and. 2.Give the center and radius of a circle.
Unit 3 Trigonometry Review Radian Measure Special Angles Unit Circle 1.
Math Angles Note 1 Definition: An angle is created when a half-ray (initial side) is rotated around a point (the vertex) and stops at a new.
Trigonometric Function: The Unit circle
Trig Functions and Acute Angles
Trigonometry - Intro Ms. Mougharbel.
( , ) ( , ) ( , ) ( , ) ( , ) ( , ) ( , ) ( , ) ( , ) ( , ) ( , )
A circle with center at (0, 0) and radius 1 is called a unit circle.
Presentation transcript:

Trigonometry Math is beautiful. Is it? Well, if its not nice, than its damn sure of a very B.I.G. *HELP*.

Trigonometry Rotation of any object in an orthogonal system is done very easy using trigonometry. Trigonometry is all about the circle having a radius of 1 unit in length. We will rapidly show the theory behind using this circle.

Trigonometry The formula we will determine is useful in rotating a point x by a number of degrees/ radians from its initial position around a center O. You need to know the initial coordinates of x and the angle by which the point must be rotated around O.

Trigonometry r O r = 1 x(a, b) A a = r * cos(A) b = r * sin(A) B x(c, d) c = r * cos(A + B) d = r * sin(A + B) Known values r, a, b, B Values to be found c, d

Trigonometry cos(A + B) = cos(A)cos(B) - sin(A)sin(B) sin(A + B) = sin(A)cos(B) + cos(A)sin(B) r * cos(A + B) = r * (cos(A)cos(B) - sin(A)sin(B)) = = r * cos(A)cos(B) – r * sin(A)sin(B) r * sin(A + B) = r * (sin(A)cos(B) + cos(A)sin(B)) = = r * sin(A)cos(B) + r * cos(A)sin(B) a = r * cos(A) ; b = r * sin(A) ; r = 1 c = r * cos(A + B) d = r * sin(A + B)

Trigonometry cos(A + B) = cos(A)cos(B) - sin(A)sin(B) sin(A + B) = sin(A)cos(B) + cos(A)sin(B) r * cos(A + B) = r * cos(A)cos(B) – r * sin(A)sin(B) r * sin(A + B) = r * sin(A)cos(B) + r * cos(A)sin(B) a = r * cos(A) ; b = r * sin(A) ; r = 1 c = r * cos(A + B) d = r * sin(A + B)

Trigonometry cos(A + B) = cos(A)cos(B) - sin(A)sin(B) sin(A + B) = sin(A)cos(B) + cos(A)sin(B) r * cos(A + B) = r * cos(A)cos(B) – r * sin(A)sin(B) r * sin(A + B) = r * sin(A)cos(B) + r * cos(A)sin(B) a = r * cos(A) ; b = r * sin(A) ; r = 1 c = r * cos(A + B) d = r * sin(A + B)

Trigonometry cos(A + B) = cos(A)cos(B) - sin(A)sin(B) sin(A + B) = sin(A)cos(B) + cos(A)sin(B) r * cos(A + B) = a * cos(B) – r * sin(A)sin(B) r * sin(A + B) = r * sin(A)cos(B) + a * sin(B) a = r * cos(A) ; b = r * sin(A) ; r = 1 c = r * cos(A + B) d = r * sin(A + B)

Trigonometry cos(A + B) = cos(A)cos(B) - sin(A)sin(B) sin(A + B) = sin(A)cos(B) + cos(A)sin(B) r * cos(A + B) = a * cos(B) – r * sin(A)sin(B) r * sin(A + B) = r * sin(A)cos(B) + a * sin(B) a = r * cos(A) ; b = r * sin(A) ; r = 1 c = r * cos(A + B) d = r * sin(A + B)

Trigonometry cos(A + B) = cos(A)cos(B) - sin(A)sin(B) sin(A + B) = sin(A)cos(B) + cos(A)sin(B) r * cos(A + B) = a * cos(B) – b * sin(B) r * sin(A + B) = b * cos(B) + a * sin(B) a = r * cos(A) ; b = r * sin(A) ; r = 1 c = r * cos(A + B) d = r * sin(A + B)

Trigonometry cos(A + B) = cos(A)cos(B) - sin(A)sin(B) sin(A + B) = sin(A)cos(B) + cos(A)sin(B) r * cos(A + B) = a * cos(B) – b * sin(B) r * sin(A + B) = b * cos(B) + a * sin(B) a = r * cos(A) ; b = r * sin(A) ; r = 1 c = r * cos(A + B) d = r * sin(A + B)

Trigonometry cos(A + B) = cos(A)cos(B) - sin(A)sin(B) sin(A + B) = sin(A)cos(B) + cos(A)sin(B) c = a * cos(B) – b * sin(B) r * sin(A + B) = b * cos(B) + a * sin(B) a = r * cos(A) ; b = r * sin(A) ; r = 1 c = r * cos(A + B) d = r * sin(A + B)

Trigonometry cos(A + B) = cos(A)cos(B) - sin(A)sin(B) sin(A + B) = sin(A)cos(B) + cos(A)sin(B) c = a * cos(B) – b * sin(B) r * sin(A + B) = b * cos(B) + a * sin(B) a = r * cos(A) ; b = r * sin(A) ; r = 1 c = r * cos(A + B) d = r * sin(A + B)

Trigonometry cos(A + B) = cos(A)cos(B) - sin(A)sin(B) sin(A + B) = sin(A)cos(B) + cos(A)sin(B) c = a * cos(B) – b * sin(B) d = b * cos(B) + a * sin(B) a = r * cos(A) ; b = r * sin(A) ; r = 1 c = r * cos(A + B) d = r * sin(A + B)

Trigonometry cos(A + B) = cos(A)cos(B) - sin(A)sin(B) sin(A + B) = sin(A)cos(B) + cos(A)sin(B) c = a * cos(B) – b * sin(B) d = b * cos(B) + a * sin(B) a = r * cos(A) ; b = r * sin(A) ; r = 1 c = r * cos(A + B) d = r * sin(A + B)

Trigonometry c = a * cos(B) – b * sin(B) d = b * cos(B) + a * sin(B) (c, d) pair represents the coordinates of x that is actually x after the rotation