Intro to ANOVA.

Slides:



Advertisements
Similar presentations
Prepared by Lloyd R. Jaisingh
Advertisements

Dr. AJIT SAHAI Director – Professor Biometrics JIPMER, Pondicherry
Lesson #24 Multiple Comparisons. When doing ANOVA, suppose we reject H 0 :  1 =  2 =  3 = … =  k Next, we want to know which means differ. This does.
Chapter 10 Hypothesis Testing Using Analysis of Variance (ANOVA)
C82MST Statistical Methods 2 - Lecture 4 1 Overview of Lecture Last Week Per comparison and familywise error Post hoc comparisons Testing the assumptions.
Analysis of Variance (ANOVA) Statistics for the Social Sciences Psychology 340 Spring 2010.
Analysis and Interpretation Inferential Statistics ANOVA
POST HOC COMPARISONS A significant F in ANOVA tells you only that there is a difference among the groups, not which groups are different. Post hoc tests.
Statistics for Managers Using Microsoft® Excel 5th Edition
Independent Sample T-test Formula
Lecture 10 PY 427 Statistics 1 Fall 2006 Kin Ching Kong, Ph.D
ANOVA Analysis of Variance: Why do these Sample Means differ as much as they do (Variance)? Standard Error of the Mean (“variance” of means) depends upon.
Chapter 10 Hypothesis Testing III (ANOVA). Basic Logic  ANOVA can be used in situations where the researcher is interested in the differences in sample.
Lecture 8 PY 427 Statistics 1 Fall 2006 Kin Ching Kong, Ph.D
Comparing Means.
Statistics for Managers Using Microsoft® Excel 5th Edition
Lecture 11 Introduction to ANOVA.
POST HOC COMPARISONS What is the Purpose?
Lecture 9: One Way ANOVA Between Subjects
Two Groups Too Many? Try Analysis of Variance (ANOVA)
Statistics for the Social Sciences Psychology 340 Spring 2005 Analysis of Variance (ANOVA)
One-way Between Groups Analysis of Variance
Comparing Means.
Comparing Several Means: One-way ANOVA Lesson 14.
1 Chapter 13: Introduction to Analysis of Variance.
Statistics for Managers Using Microsoft Excel, 4e © 2004 Prentice-Hall, Inc. Chap 10-1 Chapter 10 Analysis of Variance Statistics for Managers Using Microsoft.
Chap 10-1 Analysis of Variance. Chap 10-2 Overview Analysis of Variance (ANOVA) F-test Tukey- Kramer test One-Way ANOVA Two-Way ANOVA Interaction Effects.
Analysis of Variance (ANOVA) Quantitative Methods in HPELS 440:210.
Repeated ANOVA. Outline When to use a repeated ANOVA How variability is partitioned Interpretation of the F-ratio How to compute & interpret one-way ANOVA.
Statistics: A Tool For Social Research
Repeated Measures ANOVA
1 1 Slide © 2005 Thomson/South-Western Chapter 13, Part A Analysis of Variance and Experimental Design n Introduction to Analysis of Variance n Analysis.
COURSE: JUST 3900 INTRODUCTORY STATISTICS FOR CRIMINAL JUSTICE Instructor: Dr. John J. Kerbs, Associate Professor Joint Ph.D. in Social Work and Sociology.
Chapter 13: Introduction to Analysis of Variance
Chapter 11 HYPOTHESIS TESTING USING THE ONE-WAY ANALYSIS OF VARIANCE.
Chapter 12: Introduction to Analysis of Variance
© Copyright McGraw-Hill CHAPTER 12 Analysis of Variance (ANOVA)
Statistics 11 Confidence Interval Suppose you have a sample from a population You know the sample mean is an unbiased estimate of population mean Question:
Chapter 10 Analysis of Variance.
ANOVA (Analysis of Variance) by Aziza Munir
Business Statistics: A Decision-Making Approach, 6e © 2005 Prentice-Hall, Inc. Chap th Lesson Analysis of Variance.
Statistics for Managers Using Microsoft Excel, 4e © 2004 Prentice-Hall, Inc. Chap 10-1 Chapter 10 Analysis of Variance Statistics for Managers Using Microsoft.
Statistics for the Social Sciences Psychology 340 Fall 2013 Tuesday, October 15, 2013 Analysis of Variance (ANOVA)
One-Way Analysis of Variance
Chapter 13 - ANOVA. ANOVA Be able to explain in general terms and using an example what a one-way ANOVA is (370). Know the purpose of the one-way ANOVA.
Analysis of Variance (One Factor). ANOVA Analysis of Variance Tests whether differences exist among population means categorized by only one factor or.
Copyright © Cengage Learning. All rights reserved. 12 Analysis of Variance.
Chapter 12 Introduction to Analysis of Variance PowerPoint Lecture Slides Essentials of Statistics for the Behavioral Sciences Eighth Edition by Frederick.
ANOVA P OST ANOVA TEST 541 PHL By… Asma Al-Oneazi Supervised by… Dr. Amal Fatani King Saud University Pharmacy College Pharmacology Department.
Chapter 10 Hypothesis Testing III (ANOVA). Chapter Outline  Introduction  The Logic of the Analysis of Variance  The Computation of ANOVA  Computational.
Psy 230 Jeopardy Related Samples t-test ANOVA shorthand ANOVA concepts Post hoc testsSurprise $100 $200$200 $300 $500 $400 $300 $400 $300 $400 $500 $400.
Chap 11-1 A Course In Business Statistics, 4th © 2006 Prentice-Hall, Inc. A Course In Business Statistics 4 th Edition Chapter 11 Analysis of Variance.
Statistics for the Social Sciences Psychology 340 Spring 2009 Analysis of Variance (ANOVA)
Introduction to ANOVA Research Designs for ANOVAs Type I Error and Multiple Hypothesis Tests The Logic of ANOVA ANOVA vocabulary, notation, and formulas.
T tests comparing two means t tests comparing two means.
Simple ANOVA Comparing the Means of Three or More Groups Chapter 9.
One-way ANOVA with SPSS POSTGRADUATE METHODOLOGY COURSE Hairul Hafiz Mahsol Institute for Tropical Biology & Conservation School of Science & Technology.
ANOVA: Why analyzing variance to compare means?.
Stats/Methods II JEOPARDY. Jeopardy Estimation ANOVA shorthand ANOVA concepts Post hoc testsSurprise $100 $200$200 $300 $500 $400 $300 $400 $300 $400.
Independent Samples ANOVA. Outline of Today’s Discussion 1.Independent Samples ANOVA: A Conceptual Introduction 2.The Equal Variance Assumption 3.Cumulative.
Educational Research Inferential Statistics Chapter th Chapter 12- 8th Gay and Airasian.
Posthoc Comparisons finding the differences. Statistical Significance What does a statistically significant F statistic, in a Oneway ANOVA, tell us? What.
Chapter 12 Introduction to Analysis of Variance
Multiple Comparisons Q560: Experimental Methods in Cognitive Science Lecture 10.
CHAPTER 12 ANALYSIS OF VARIANCE
The ANOVA, Easy Statistics.
Analysis of Variance (ANOVA)
Introduction to ANOVA.
1-Way Analysis of Variance - Completely Randomized Design
Analysis of Variance (ANOVA)
Presentation transcript:

Intro to ANOVA

What Is ANOVA? Analysis of Variance. This is a hypothesis-testing procedure that is used to evaluate mean differences between two of more treatments (or populations). What is the difference between this and t tests? ANOVA allows us to look at more than two groups at once.

Some Terminology In analysis of variance, the variable (independent or quasi-independent) that designates the groups being compared is called a factor. The individual conditions or values that make up a factor are called the levels of the factor.

Formulae SSw =  (Xij – X.j)2 SSbet =  nj (X.j – X..)2 SStot =  (Xij – X..)2 MSw = SSw/dfw MSb = SSb/dfb F = MSb/MSw

Looking At Error The F statistic is calculated by comparing the error between groups (theoretically due to the treatment effect) to the error within groups (theoretically due to chance, or error). We look to see if differences due to our treatment effect is proportionally greater than differences due to chance alone.

Reporting ANOVA Source SS df MS Between F = Within Total

Examples From Excel

Reading The Table

Effect Size For ANOVA we use eta squared 2 Calculated 2 = SSbetween/SStotal

Post Hoc Tests These are additional hypothesis tests that are done after an ANOVA to determine exactly which mean differences are significant and which are not. If you reject the null, and there are three or more treatments, you may wish to explore which groups contain the mean differences.

Accumulation of Type I Error Experimentwise alpha: This is the overall probability of a Type I error that can accumulate over a series of separate hypothesis tests. Typically, the experiment-wise alpha is substantially greater than the value of alpha used for any one of the individual tests.

Planned Comparisons Planned comparisons refer to specific mean differences that are relevant to specific hypotheses the researcher had in mind before the study was conducted. For planned comparisons, we generally don’t worry about accumulation of Type I error. What we will do is use a smaller alpha level to test these hypotheses, often dividing alpha by the number of planned comparisons.

Unplanned Comparisons Unplanned comparisons involve sifting through the data to find significant results. When doing this you have to worry about accumulation of Type I error in your results. Two commonly used procedures to protect against this accumulation are Tukey’s HSD and the Scheffe test.

Tukey’s HSD Tukey’s Honestly Significant Difference (HSD) is used to compare two treatment conditions. If the mean difference between those treatment conditions exceeds Tukey’s HSD, you conclude that there is a significant difference between the treatments HSD = q√ MSw/n Where the value of q is found in Table B.5 (p. 708) Tukey’s requires that n be the same for all treatments.

The Scheffe Test Scheffe is very conservative, therefore if you use Scheffe and find a significant difference, you can feel safe you have found a true difference. For Scheffe’s test, you calculate a serperate between groups MSb for the two groups you are looking at, and then compare this new MSb to the experimentwise MSw.

F as Compared to T For a two sample test, an ANOVA or a t-test can be used. For these situations you would get F = t2

Assumptions The observations within each sample must be independent The populations must be normal The populations must has equal variances (homogeneity of variance) This is important to test, and we due so by Hartley’s F-max test for homogeneity of variance (table on 704) Compute the sample variance for each sample Divide the largest by the smallest K is the number of samples n is the sample size for each sample (assuming equal n’s)