Ismétlés
General model of quantum algorithms InitializationParallelization Amplitude ampl. Measu- rement Classical input Classical output Quantum output Quantum input
A Deutsch-Józsa algoritmus
Deutsch-Józsa-algoritmus
Quantum Fourier Transform
Classical Quantum Classical Discrete Fourier Transform (DFT) Quantum Discrete Fourier Transform (QFT)
How to implement QFT 3 Copyright © 2005 John Wiley & Sons Ltd.
How to implement QFT 6 Remarks –Complexity: –QFT is not for computing Fourier coefficients in a faster way since they are represented by probability amplitudes!
Kérjük kedves utasainkat ellenőrizzék az Önök előtti ülés háttámlájában található biztonsági útmutatót. A mentőmellények a székek alatt találhatók, a vészkijárat jobb hátul. Kérjük csatolják be biztonsági öveiket és fejezzék be a dohányzást! Felszállunk.
Quantum Phase Estimation
The problem Each unitary transform having eigenvector has eigenvalues in the form of. Phase ratio:
Idealistic case – back to the QFT
Quantum Phase Estimator How to initialize ?
Practical case IQFT will work not correctly
Prob. amplitudes
Error analysis
Quantum Phase Estimator
Error analysis
The RSA algorithm
Order finding – Shor algorithm
Connection between factoring and order finding
Prime factorization
The Shor Algoritm Ki, hogy csinálná??????
General model of quantum algorithms InitializationParallelization Amplitude ampl. Measu- rement Classical input Classical output Quantum output Quantum input
From quregister to tensor product of qubits Phase estimator: Shor: Connection between them:
Uniformly distributed eigenvectors by means of initialization of the lower quregister:
Using Shor’s order finding algorithm to break RSA
QFT as a generalized Hadamard Transform Hadamard: QFT: