Morgan Kaufmann Publishers Large and Fast: Exploiting Memory Hierarchy

Slides:



Advertisements
Similar presentations
SE-292 High Performance Computing
Advertisements

CS 105 Tour of the Black Holes of Computing
Cache and Virtual Memory Replacement Algorithms
SE-292 High Performance Computing Memory Hierarchy R. Govindarajan
1 COMP 206: Computer Architecture and Implementation Montek Singh Wed., Oct. 23, 2002 Topic: Memory Hierarchy Design (HP3 Ch. 5) (Caches, Main Memory and.
Computation I pg 1 Embedded Computer Architecture Memory Hierarchy: Cache Recap Course 5KK73 Henk Corporaal November 2014
1 Lecture 20 – Caching and Virtual Memory  2004 Morgan Kaufmann Publishers Lecture 20 Caches and Virtual Memory.
1 Chapter Seven Large and Fast: Exploiting Memory Hierarchy.
331 Lec20.1Fall :332:331 Computer Architecture and Assembly Language Fall 2003 Week 13 Basics of Cache [Adapted from Dave Patterson’s UCB CS152.
Memory Organization.
Caching I Andreas Klappenecker CPSC321 Computer Architecture.
1  1998 Morgan Kaufmann Publishers Chapter Seven Large and Fast: Exploiting Memory Hierarchy.
Caches The principle that states that if data is used, its neighbor will likely be used soon.
11/3/2005Comp 120 Fall November 10 classes to go! Cache.
Revision Mid 2 Prof. Sin-Min Lee Department of Computer Science.
1  2004 Morgan Kaufmann Publishers Chapter Seven.
1 SRAM: –value is stored on a pair of inverting gates –very fast but takes up more space than DRAM (4 to 6 transistors) DRAM: –value is stored as a charge.
Morgan Kaufmann Publishers Large and Fast: Exploiting Memory Hierarchy
Lecture 31: Chapter 5 Today’s topic –Direct mapped cache Reminder –HW8 due 11/21/
Caches – basic idea Small, fast memory Stores frequently-accessed blocks of memory. When it fills up, discard some blocks and replace them with others.
Computing Systems Memory Hierarchy.
Memory Hierarchy and Cache Design The following sources are used for preparing these slides: Lecture 14 from the course Computer architecture ECE 201 by.
Computer Orgnization Rabie A. Ramadan Lecture 7. Wired Control Unit What are the states of the following design:
Chapter 5 Large and Fast: Exploiting Memory Hierarchy.
CMPE 421 Parallel Computer Architecture
Five Components of a Computer
EECS 318 CAD Computer Aided Design LECTURE 10: Improving Memory Access: Direct and Spatial caches Instructor: Francis G. Wolff Case.
Chapter 5 Large and Fast: Exploiting Memory Hierarchy CprE 381 Computer Organization and Assembly Level Programming, Fall 2013 Zhao Zhang Iowa State University.
Cache Basics Define temporal and spatial locality.
Lecture 19 Today’s topics Types of memory Memory hierarchy.
1 CMPE 421 Advanced Computer Architecture Accessing a Cache PART1.
CS1104 – Computer Organization PART 2: Computer Architecture Lecture 10 Memory Hierarchy.
King Fahd University of Petroleum and Minerals King Fahd University of Petroleum and Minerals Computer Engineering Department Computer Engineering Department.
CSCI-365 Computer Organization Lecture Note: Some slides and/or pictures in the following are adapted from: Computer Organization and Design, Patterson.
1 How will execution time grow with SIZE? int array[SIZE]; int sum = 0; for (int i = 0 ; i < ; ++ i) { for (int j = 0 ; j < SIZE ; ++ j) { sum +=
CSCI-365 Computer Organization Lecture Note: Some slides and/or pictures in the following are adapted from: Computer Organization and Design, Patterson.
The Goal: illusion of large, fast, cheap memory Fact: Large memories are slow, fast memories are small How do we create a memory that is large, cheap and.
1 Chapter Seven. 2 Users want large and fast memories! SRAM access times are ns at cost of $100 to $250 per Mbyte. DRAM access times are ns.
Caches Hiding Memory Access Times. PC Instruction Memory 4 MUXMUX Registers Sign Ext MUXMUX Sh L 2 Data Memory MUXMUX CONTROLCONTROL ALU CTL INSTRUCTION.
Memory Hierarchy: Terminology Hit: data appears in some block in the upper level (example: Block X)  Hit Rate : the fraction of memory access found in.
1 Chapter Seven CACHE MEMORY AND VIRTUAL MEMORY. 2 SRAM: –value is stored on a pair of inverting gates –very fast but takes up more space than DRAM (4.
Memory Hierarchy How to improve memory access. Outline Locality Structure of memory hierarchy Cache Virtual memory.
1 Chapter Seven. 2 Users want large and fast memories! SRAM access times are ns at cost of $100 to $250 per Mbyte. DRAM access times are ns.
1  1998 Morgan Kaufmann Publishers Chapter Seven.
Lecture 5: Memory Performance. Types of Memory Registers L1 cache L2 cache L3 cache Main Memory Local Secondary Storage (local disks) Remote Secondary.
Caches 1 Computer Organization II © McQuain Memory Technology Static RAM (SRAM) – 0.5ns – 2.5ns, $2000 – $5000 per GB Dynamic RAM (DRAM)
The Memory Hierarchy (Lectures #17 - #20) ECE 445 – Computer Organization The slides included herein were taken from the materials accompanying Computer.
Chapter 5 Large and Fast: Exploiting Memory Hierarchy.
1 Chapter Seven. 2 SRAM: –value is stored on a pair of inverting gates –very fast but takes up more space than DRAM (4 to 6 transistors) DRAM: –value.
1 How will execution time grow with SIZE? int array[SIZE]; int sum = 0; for (int i = 0 ; i < ; ++ i) { for (int j = 0 ; j < SIZE ; ++ j) { sum +=
Computer Organization CS224 Fall 2012 Lessons 37 & 38.
The Memory Hierarchy Cache, Main Memory, and Virtual Memory Lecture for CPSC 5155 Edward Bosworth, Ph.D. Computer Science Department Columbus State University.
Introduction to computer architecture April 7th. Access to main memory –E.g. 1: individual memory accesses for j=0, j++, j
Chapter 7 Large and Fast: Exploiting Memory Hierarchy.
Yu-Lun Kuo Computer Sciences and Information Engineering
The Goal: illusion of large, fast, cheap memory
CS352H: Computer Systems Architecture
Morgan Kaufmann Publishers Large and Fast: Exploiting Memory Hierarchy
How will execution time grow with SIZE?
Morgan Kaufmann Publishers Memory & Cache
Morgan Kaufmann Publishers
The Memory Hierarchy Chapter 5
CACHE MEMORY.
10/16: Lecture Topics Memory problem Memory Solution: Caches Locality
Morgan Kaufmann Publishers Memory Hierarchy: Cache Basics
Morgan Kaufmann Publishers Memory Hierarchy: Introduction
Chapter Five Large and Fast: Exploiting Memory Hierarchy
Memory Hierarchy Lecture notes from MKP, H. H. Lee and S. Yalamanchili.
Cache Memory and Performance
Memory Principles.
Presentation transcript:

Morgan Kaufmann Publishers Large and Fast: Exploiting Memory Hierarchy 25 March, 2017 Chapter 5 Large and Fast: Exploiting Memory Hierarchy Chapter 5 — Large and Fast: Exploiting Memory Hierarchy

Morgan Kaufmann Publishers 25 March, 2017 Memory Technology §5.1 Introduction Static RAM (SRAM) 0.5ns – 2.5ns, $2000 – $5000 per GB Dynamic RAM (DRAM) 50ns – 70ns, $20 – $75 per GB Magnetic disk 5ms – 20ms, $0.20 – $2 per GB Ideal memory Access time of SRAM Capacity and cost/GB of disk Chapter 5 — Large and Fast: Exploiting Memory Hierarchy — 2 Chapter 5 — Large and Fast: Exploiting Memory Hierarchy

Morgan Kaufmann Publishers 25 March, 2017 Principle of Locality Programs access a small proportion of their address space at any time Temporal locality Items accessed recently are likely to be accessed again soon e.g., instructions in a loop, induction variables Spatial locality Items near those accessed recently are likely to be accessed soon E.g., sequential instruction access, array data Chapter 5 — Large and Fast: Exploiting Memory Hierarchy — 3 Chapter 5 — Large and Fast: Exploiting Memory Hierarchy

Taking Advantage of Locality Morgan Kaufmann Publishers 25 March, 2017 Taking Advantage of Locality Memory hierarchy Store everything on disk Copy recently accessed (and nearby) items from disk to smaller DRAM memory Main memory Copy more recently accessed (and nearby) items from DRAM to smaller SRAM memory Cache memory attached to CPU Chapter 5 — Large and Fast: Exploiting Memory Hierarchy — 4 Chapter 5 — Large and Fast: Exploiting Memory Hierarchy

Memory Hierarchy Levels Morgan Kaufmann Publishers 25 March, 2017 Memory Hierarchy Levels Block (aka line): unit of copying May be multiple words If accessed data is present in upper level Hit: access satisfied by upper level Hit ratio: hits/accesses If accessed data is absent Miss: block copied from lower level Time taken: miss penalty Miss ratio: misses/accesses = 1 – hit ratio Then accessed data supplied from upper level Chapter 5 — Large and Fast: Exploiting Memory Hierarchy — 5 Chapter 5 — Large and Fast: Exploiting Memory Hierarchy

Morgan Kaufmann Publishers 25 March, 2017 Cache Memory Cache memory The level of the memory hierarchy closest to the CPU Given accesses X1, …, Xn–1, Xn §5.2 The Basics of Caches How do we know if the data is present? Where do we look? Chapter 5 — Large and Fast: Exploiting Memory Hierarchy — 6 Chapter 5 — Large and Fast: Exploiting Memory Hierarchy

Morgan Kaufmann Publishers 25 March, 2017 Direct Mapped Cache Location determined by address Direct mapped: only one choice (Block address) modulo (#Blocks in cache) #Blocks is a power of 2 Use low-order address bits Chapter 5 — Large and Fast: Exploiting Memory Hierarchy — 7 Chapter 5 — Large and Fast: Exploiting Memory Hierarchy

Morgan Kaufmann Publishers 25 March, 2017 Tags and Valid Bits How do we know which particular block is stored in a cache location? Store block address as well as the data Actually, only need the high-order bits Called the tag What if there is no data in a location? Valid bit: 1 = present, 0 = not present Initially 0 Chapter 5 — Large and Fast: Exploiting Memory Hierarchy — 8 Chapter 5 — Large and Fast: Exploiting Memory Hierarchy

Morgan Kaufmann Publishers 25 March, 2017 Cache Example 8-blocks, 1 word/block, direct mapped Initial state Index V Tag Data 000 N 001 010 011 100 101 110 111 Chapter 5 — Large and Fast: Exploiting Memory Hierarchy — 9 Chapter 5 — Large and Fast: Exploiting Memory Hierarchy

Morgan Kaufmann Publishers 25 March, 2017 Cache Example Word addr Binary addr Hit/miss Cache block 22 10 110 Miss 110 Index V Tag Data 000 N 001 010 011 100 101 110 Y 10 Mem[10110] 111 Chapter 5 — Large and Fast: Exploiting Memory Hierarchy — 10 Chapter 5 — Large and Fast: Exploiting Memory Hierarchy

Morgan Kaufmann Publishers 25 March, 2017 Cache Example Word addr Binary addr Hit/miss Cache block 26 11 010 Miss 010 Index V Tag Data 000 N 001 010 Y 11 Mem[11010] 011 100 101 110 10 Mem[10110] 111 Chapter 5 — Large and Fast: Exploiting Memory Hierarchy — 11 Chapter 5 — Large and Fast: Exploiting Memory Hierarchy

Morgan Kaufmann Publishers 25 March, 2017 Cache Example Word addr Binary addr Hit/miss Cache block 22 10 110 Hit 110 26 11 010 010 Index V Tag Data 000 N 001 010 Y 11 Mem[11010] 011 100 101 110 10 Mem[10110] 111 Chapter 5 — Large and Fast: Exploiting Memory Hierarchy — 12 Chapter 5 — Large and Fast: Exploiting Memory Hierarchy

Morgan Kaufmann Publishers 25 March, 2017 Cache Example Word addr Binary addr Hit/miss Cache block 16 10 000 Miss 000 3 00 011 011 Hit Index V Tag Data 000 Y 10 Mem[10000] 001 N 010 11 Mem[11010] 011 00 Mem[00011] 100 101 110 Mem[10110] 111 Chapter 5 — Large and Fast: Exploiting Memory Hierarchy — 13 Chapter 5 — Large and Fast: Exploiting Memory Hierarchy

Morgan Kaufmann Publishers 25 March, 2017 Cache Example Word addr Binary addr Hit/miss Cache block 18 10 010 Miss 010 Index V Tag Data 000 Y 10 Mem[10000] 001 N 010 Mem[10010] 011 00 Mem[00011] 100 101 110 Mem[10110] 111 Chapter 5 — Large and Fast: Exploiting Memory Hierarchy — 14 Chapter 5 — Large and Fast: Exploiting Memory Hierarchy

Morgan Kaufmann Publishers 25 March, 2017 Address Subdivision Chapter 5 — Large and Fast: Exploiting Memory Hierarchy — 15 Chapter 5 — Large and Fast: Exploiting Memory Hierarchy

Example: Larger Block Size Morgan Kaufmann Publishers 25 March, 2017 Example: Larger Block Size 64 blocks, 16 bytes/block To what block number does address 1200 map? Block address = 1200/16 = 75 Block number = 75 modulo 64 = 11 Tag Index Offset 3 4 9 10 31 4 bits 6 bits 22 bits Chapter 5 — Large and Fast: Exploiting Memory Hierarchy — 16 Chapter 5 — Large and Fast: Exploiting Memory Hierarchy