Olivier Geoffroy Parameterization of precipitation in boundary layer clouds at the cloud system scale Pier Siebesma, Roel Neggers RK science lunch, 05/10/2010.

Slides:



Advertisements
Similar presentations
George Kallos With contribution from S. Solomos, I. Kushta, M. Astitha, C. Spyrou, I. Pytharoulis Key Processes in Regional Atmospheric.
Advertisements

Clouds and cloud microphysics Wojciech W. Grabowski National Center for Atmospheric Research, Boulder, Colorado, USA (on collaborative leave at CNRM, Toulouse,
Simulating cloud-microphysical processes in CRCM5 Ping Du, Éric Girard, Jean-Pierre Blanchet.
Enrichment of surface-active compounds in coalescing cloud drops I. Taraniuk 1, A. Kostinski 2, Y. Rudich 1 1 Department of Environmental Sciences, Weizmann.
Parametric representation of the hydrometeor spectra for LES warm bulk microphysical schemes. Olivier Geoffroy, Pier Siebesma (KNMI), Jean-Louis Brenguier,
SCIENCE JOURNAL 10/25/ st PAGE MY SCIENCE JOURNAL BY __________________.
By : Kerwyn Texeira. Outline Definitions Introduction Model Description Model Evaluation The effect of dust nuclei on cloud coverage Conclusion Questions.
Two-Moment Aerosol Microphysics (TOMAS) Development GEOS-CHEM User’s Meeting 4-6 April 2005 Funding: NSF / NASA Peter Adams Kaiping Chen Jeffrey Pierce.
The Centre for Australian Weather and Climate Research A partnership between CSIRO and the Bureau of Meteorology The Effect of Turbulence on Cloud Microstructure,
Implementation of Sulfate and Sea-Salt Aerosol Microphysics in GEOS-Chem Hi everyone. My name is Win Trivitayanurak… I’m a PhD student working with Peter.
Water in the Air When water drops form on a cold glass, the water comes from the air around the glass. Water vapor is water in the form of a gas. The amount.
Spectral microphysics in weather forecast models with special emphasis on cloud droplet nucleation Verena Grützun, Oswald Knoth, Martin Simmel, Ralf Wolke.
Aerosol effects on rain and hail formation and their representation using polarimetric radar signatures Eyal Ilotovich, Nir Benmoshe and Alexander Khain.
THE HYDROLOGIC CYCLE.
Cloud Aerosol Research in the Marine Atmosphere (CARMA) A multi-year project to look primarily at the interaction of aerosols and clouds in the marine.
Monterey Area Ship Track (MAST) Experiment Virendra P. Ghate MPO 531.
What processes control diversity in the sensitivity of warm low clouds to aerosol perturbations? Robert Wood Graham Feingold Dave Turner.
The Water Cycle Wind Condensation Precipitation Runoff Collection Review Evaporation.
Atmospheric Technology Division Rain In Cumulus over the Ocean Jorgen Jensen, Jeff Stith, Teresa Campos, Mary Barth, Dave Rogers NCAR science to complement.
Aerosol-Cloud Interactions and Radiative Forcing: Modeling and Observations Graham Feingold 1, K. S. Schmidt 2, H. Jiang 3, P. Zuidema 4, H. Xue 5, P.
Aerosol-cloud-climate interactions: modeling and observations at the cloud scale Graham Feingold NOAA Earth System Research Laboratory Boulder, Colorado.
RICO Modeling Studies Group interests RICO data in support of studies.
Boundary Layer Clouds.
Cloud Microphysics Liz Page NWS/COMET Hydromet February 2000.
Water Droplet Growth by Condensation & Collision
Cloud-Aerosol-climate feedback
Water Cycle G3 Q1 SNB Lesson 6 Alt-MSA HCPSS Elementary Science Curriculum, 2010.
Modeling Mesoscale Cellular Structures and Drizzle in Marine Stratocumulus Wang and Feingold, JAS, 2009 Part I,II Wang et al, ACP, 2010 Feingold et al,
LES modeling of precipitation in Boundary Layer Clouds and parameterisation for General Circulation Model O. Geoffroy J.L. Brenguier CNRM/GMEI/MNPCA.
CCN Variability During LBA-SMOCC-EMfiN! 2002 and Its Role on Precipitation Initiation Over the Amazon Basin.
Limits to Aerosol Indirect Effects in marine low clouds
Simulation of the indirect radiative forcing of climate due to aerosols by the two-way coupled WRF-CMAQ model over the continental United States: Preliminary.
Aerosol Indirect Effects in CAM and MIRAGE Steve Ghan Pacific Northwest National Laboratory Jean-Francois Lamarque, Peter Hess, and Francis Vitt, NCAR.
Towards parameterization of cloud drop size distribution for large scale models Wei-Chun Hsieh Athanasios Nenes Image source: NCAR.
PAPERSPECIFICS OF STUDYFINDINGS Kohler, 1936 (“The nucleus in and the growth of hygroscopic droplets”) Evaporate 2kg of hoar-frost and determined Cl content;
The Water Cycle. What process of the water cycle is being shown here? Condensation Evaporation.
The Third Indirect Aerosol-Cloud Effect: Global Model Sensitivity and Restrictions Hans-F. Graf and Frank J. Nober EGS-AGU-ESF meeting Nice, April 2003.
SIMULATION OF AEROSOL EFFECTS ON CONVECTIVE CLOUDS UNDER CONTINENTAL AND MARITIME CONDITIONS Alexander Khain, Andrei Pokrovsky and Daniel Rosenfeld Institute.
Parameterization of cloud droplet formation and autoconversion in large-scale models Wei-Chun Hsieh Advisor: Athanasios Nenes 10,Nov 2006 EAS Graduate.
Aerosol 1 st indirect forcing in the coupled CAM-IMPACT model: effects from primary-emitted particulate sulfate and boundary layer nucleation Minghuai.
Cloud Formation A cloud is a collection of liquid water droplets and/or ice crystals suspended in the atmosphere and dense enough to be visible. Clouds.
1. Precipitation 2 Rain, snow, sleet, and hail are all forms of precipitation 3 Vocabulary: precipitation Water that falls to Earth.
The Water (H 2 O) Cycle Fourth Grade Science. The Sun The sun’s energy is necessary to power the water cycle.
Mayurakshi Dutta Department of Atmospheric Sciences March 20, 2003
THE HYDROLOGIC CYCLE.
The Water Cycle A water cycle is the way water moves from the air to land and back again.
TYPES OF PRECIPITATION
Putting the Clouds Back in Aerosol-Cloud Interactions
Matthew Christensen and Graeme Stephens
Class #25: Friday, March 6 Clouds, fronts, precipitation processes, upper-level waves, and the extratropical cyclone Class #25: Friday, March 6, 2009.
Aerosol Physics & Climate
ICE-POP WORKSOP Sep , Korea
What are the causes of GCM biases in cloud, aerosol, and radiative properties over the Southern Ocean? How can the representation of different processes.
The Water Cycle A presentation by Science Doodles.
The Water (H2O) Cycle Fourth Grade Science.
THE WATER CYCLE.
Microphysical-macrophysical interactions or Why microphysics matters
Group interests RICO data required
Precipitation driving of droplet concentration variability in marine low clouds A simple steady-state budget model for cloud condensation nuclei, driven.
It all starts with water
Sensitivity of WRF microphysics to aerosol concentration
The Water (H2O) Cycle Fourth Grade Science.
Turbulence-induced broadening of cloud-droplet size distributions: Implications for aerosol effects on climate Tuesday, April 25, :00-12:00 Noon.
Breakout Group B: summary Aerosol-Cloud-Precipitation Science Objectives Chemistry/aerosol distinct differences in key terms in aerosol budgets in different.
A Bulk Parameterization of Giant CCN
 Return to #1 or proceed forward
The Water (H2O) Cycle Fourth Grade Science.
Water Cycle.
Further use and development of the bin-resolved warm phase LEM
Group interests RICO data in support of studies
Presentation transcript:

Olivier Geoffroy Parameterization of precipitation in boundary layer clouds at the cloud system scale Pier Siebesma, Roel Neggers RK science lunch, 05/10/2010

Microphysical processes w CCN : D ~ µm D 40 µm n(D) Cloud droplets : ~ 1 µm < D < ~ 40 µm CCN Activation

Microphysical processes Condensation w CCN : D ~ µm D 40 µm D n(D) Cloud droplets : ~ 1 µm < D < ~ 40 µm CCN Activation

Microphysical processes Condensation w CCN : D ~ µm D 40 µm D n(D) Cloud droplets : ~ 1 µm < D < ~ 40 µm CCN Activation Mixing D 40 µm n(D)

Microphysical processes Condensation w CCN : D ~ µm D 40 µm D n(D) Cloud droplets : ~ 1 µm < D < ~ 40 µm CCN Activation Cloud droplet sedimentation Mixing D 40 µm n(D)

Microphysical processes Cloud droplets : ~ 1 µm < D < ~ 40 µm Condensation w precipitation embryo D ~ 40 µm Cloud droplet sedimentation CCN : D ~ µm D 40 µm D n(D) Collection D 40 µm n(D) ECS CCN Activation Collection : Efficient for D > 40 µm (Bartlett, 1970) Mixing D 40 µm n(D)

Microphysical processes Cloud droplets : ~ 1 µm < D < ~ 40 µm Condensation precipitation embryo D ~ 40 µm Cloud droplet sedimentation CCN : D ~ µm D 40 µm D n(D) Collection D 40 µm n(D) ECS CCN Activation Collection : Efficient for D > 40 µm (Bartlett, 1970) Mixing D 40 µm n(D) Polluted cloud w  precipitation efficiency (?)  LWP ( ? (feedbacks) ) (2 nd aerosol indirect effect)

Microphysical processes Condensation w CCN : D ~ µm D 40 µm D n(D) Cloud droplets : ~ 1 µm < D < ~ 40 µm CCN Activation Cloud droplet sedimentation Mixing D 40 µm n(D) Marine cloud

Microphysical processes Cloud droplets : ~ 1 µm < D < ~ 40 µm Condensation w precipitation embryo D ~ 40 µm Cloud droplet sedimentation CCN : D ~ µm D 40 µm D n(D) Collection D 40 µm n(D) ECS CCN Activation Collection : Efficient for D > 40 µm (Bartlett, 1970) Mixing D 40 µm n(D)

Microphysical processes Condensation w Cloud droplet sedimentation CCN : D ~ µm D 40 µm D n(D) Collection D 40 µm n(D) ECS Rain drops ~ 40 µm <D < µm Cloud droplets : ~ 1 µm < D < ~ 40 µm precipitation embryo D ~ 40 µm CCN Activation Mixing D 40 µm n(D) Growth depends on the available amount of water i.e. H or LWP

Microphysical processes Condensation w Rain drops ~ 40 µm <D < µm Cloud droplet sedimentation CCN : D ~ µm D 40 µm D n(D) Mixing D 40 µm n(D) Collection D 40 µm n(D) ECS Cloud droplets : ~ 1 µm < D < ~ 40 µm precipitation embryo D ~ 40 µm CCN Activation Rain sedimentation

Microphysical processes Condensation Rain drops ~ 40 µm <D < µm Cloud droplet sedimentation CCN : D ~ µm D 40 µm D n(D) Mixing D 40 µm n(D) Collection D 40 µm n(D) ECS Cloud droplets : ~ 1 µm < D < ~ 40 µm precipitation embryo D ~ 40 µm CCN Activation Rain sedimentation  size sorting Rain evaporation

Microphysical processes Condensation Rain drops ~ 40 µm <D < µm Cloud droplet sedimentation CCN : D ~ µm D 40 µm D n(D) Mixing D 40 µm n(D) Collection D 40 µm n(D) ECS Cloud droplets : ~ 1 µm < D < ~ 40 µm precipitation embryo D ~ 40 µm CCN Activation Rain sedimentation  size sorting Rain evaporation

Microphysical processes Condensation Rain drops ~ 40 µm <D < µm Cloud droplet sedimentation CCN : D ~ µm D 40 µm D n(D) Mixing D 40 µm n(D) Rain sedimentation  size sorting Collection D 40 µm n(D) ECS Cloud droplets : ~ 1 µm < D < ~ 40 µm precipitation embryo D ~ 40 µm CCN Activation Rain evaporation

Objective - Development of a precipitation scheme for boundary layer clouds at the GCM scale Precipitation in a key process in BLC evolution.  Low cloud regimes and transitions between regimes Earth radiation budget, general circulation, hydrological cycle.  Quantification of the aerosol indirect effect.

explicit or bin D n(D) Bulk Cloud rain D D0D0 n(D) Autoconversion Accretion Self-collection 2 bins  4 collection processes Collection processes : Stochastic Collection Equation (SCE) LES collection schemes Cloud rain Cloud : q c (g kg -1 ) N c (cm -3 ) Rain : q r (g kg -1 ) N r (cm -3 ) Measured spectra D 0 ~ µm D0D0 Cloud rain D (μm)

Autoconversion Cloud : q c (g kg -1 ) N c (cm -3 ) Rain : q r (g kg -1 ) N r (cm -3 ) Precipitation formation, autoconversion rate Khairoutdinov and Kogan (2000) Beheng (1994) Seifert and Beheng (2001) 4-2 Tripoli and Cotton (2000) α β Kessler (1969) 1 Treshold H(q c -q treshold ) Sundqvist (1978) 1 Liu and Daum (2006) H(r 6 -r treshold ) H(r v -r vtreshold ) N aerosol Highly non linear Auto rate qcqc Aerosol indirect effect  dependance in N c necessary NcNc NcNc Accretion Depends on local values

Autoconversion / accretion rates mean profiles (12H) in cumulus Only in cloud core - Formation of precipitation in cloud core -Accretion = ~ 10 x autoconversion -Simulations show larger accretion rate for w up -v qr > 0 (drops go upward) Only in cloud core autoaccr w up -v qr > 0 w up -v qr < 0 v qr w up accr

Autoconversion: Frac=cste 0 overlap, Sundqvist (1978) scheme w=w up (k-1) q c =l up (k) =cste?

New scheme Autoconversion: Frac=cste w=w up (k-1) q c =l up (k)

New scheme, accretion regime Accretion: Frac=cste (From RICO in situ measurements)

New scheme, overlap Frac=cste k+1 k zkzk hoho z top ?

Autoconversion formulation (kg kg -1 s -1 ) LES simulations (12H) - RICO, moister RICO - N c = 40, 50, 70, 100, 200 cm -3 - Seifert and Beheng (2006) scheme: Identification of individual clouds and average clouds of same height power law hypothesis: & regression auto LES = f(auto param ) 1/1 line Horizontal mean values of:

SCM results

LWP, rain flux at surface, N c =50, 70, 100, 200 cm-3 50 cm cm cm -3 No rain 100 cm -3 LWP: precipitation at surface: 60 g m -2 = 25 Wm -2 ~ 0.4 mm h -1 ~ 10 mm j cm cm cm cm -3

rain flux profiles N c =50, 200 cm-3 N c = 50 cm -3 N c = 200 cm -3

Autoconversion time scale w=5ms -1 w=1ms -1 w=w up w=5ms -1 w=1ms -1 w=w up

Sensitivity to the overlap h 0 =1000 h 0 =600 h 0 =300 LWP N c = 50 cm -3 h 0 =300 h 0 =600 h 0 =1000

- Developpment and implementation of a precipitation scheme in ECMWF SCM model coupled with the DualM scheme. - Possibility to take in account the shear effect - Possible to take in account interaction between precipitation flux and the stratiform component of the cloud (for Sc). - Dependency in N CCN  Test of the scheme using the KPT and half a year of precipitation flux and CCN concentration measurements: Conclusion and perpective North Sea origins Dust episode CCN concentration at Cabauw during IMPACT (May 2008) Regional background Regionalbackground

Sundqvist no evapSB, no evap, N c 70 lwp R surf

Sundqvist no evapSB, no evap, N c 50 lwp R surf

SB, evap2, N c 70 lwp R surf SB, evap2, N c 200 lwp R surf

h 0 =300, 500, 800, 1500, SB, Nc 50, evap2 lwp h mh m h m h m

SB, Nc 50, original evap lwp auto2, Nc 50, original evap auto2, Nc 50, evap2

SB, evap2, N c 50 lwp R surf

Nc 50 cm-3 Nc 70 cm-3 Nc 200 cm-3 lwp auto 2 (a=2.74, b=-1.35)

Param accr up + auto w 0 =5 ms -1 10e-6 a qr =1.85 b Nc =1.17

Param accr up + auto w 0 =5 ms e-6

LWP, rain flux at surface, N c =50, 70, 100, 200 cm-3 50 cm cm cm -3 No rain 100 cm -3 LWP: precipitation at surface: 60 g m -2 = 25 Wm -2 ~ 0.4 mm h -1 ~ 10 mm j cm cm cm cm -3 5 Wm -2

Steady state:

w up -v qr < 0 w up -v qr > 0