A comparison of OMI NO 2 VTC with in- situ measurements in Switzerland Dominik Brunner, Brigitte Buchmann, Thomas Seitz, and Martin Steinbacher Empa, Swiss.

Slides:



Advertisements
Similar presentations
SURFACE SOLAR IRRADIANCE FROM SEVIRI SATELLITE DATA
Advertisements

Rossana Dragani Using and evaluating PROMOTE services at ECMWF PROMOTE User Meeting Nice, 16 March 2009.
EGU GA, Wien, April 2007 Kaiser et al., Fire, 1 Global Fire Emission Modelling for Atmospheric Composition and Land Cover Monitoring Johannes W. Kaiser,
0 - 0.
DRC 2006.Presenters Name.March 7-9.p 1 Californias enormous computing resources allow climate simulations at unprecedented resolution capturing Californias.
Addition Facts
The University of Reading Helen Dacre The Prediction And Observation Of Volcanic Ash Clouds During The Eyjafjallajökull Eruption Helen Dacre and Alan Grant.
Proposed new uses for the Ceilometer Network
© University of Reading Richard Allan Department of Meteorology, University of Reading Thanks to: Jim Haywood and Malcolm.
High Resolution MOS Forecasts Based on a Low Resolution Model Dipl.-Met. Klaus Knüpffer, 28.Sep 2009 OUTLINE 1. MOS reduces 50% of the error variance of.
Calibration Method of Microwave Tb for Retrieving Accurate SST Akira Shibata JAXA / EORC Advances of Satellite Oceanography at Vladivostok, Oct. 3-6, 2007.
CHIMERE air quality forecasts : results during Pays de la Loire summer 2004 experiment and end-user point of view ! Arnaud REBOURS - AIR PAYS DE LA LOIRE.
Page 1 Tropospheric NO 2 workshop, KNMI, De Bilt NL, Sept 2007M. Van Roozendael Tropospheric NO 2 from space: retrieval issues and perspectives for.
Henk Eskes, NO2 workshop KNMI, 10 Sep 2007 A combined retrieval, modelling and assimilation approach to estimate tropospheric NO2 from OMI measurements.
SCATTER final seminar, Brussels, 9 November 2004 SCATTER Testing and evaluating potential solutions to control urban sprawl, through simulation.
Inferring SO 2 and NO x Emissions from Satellite Remote Sensing Randall Martin with contributions from Akhila Padmanabhan, Gray O’Byrne, Sajeev Philip.
Mapping Surface NO 2 and PM 2.5 from Satellite Observations Randall Martin, Dalhousie University with contributions from Aaron van Donkelaar, Dalhousie.
Addition 1’s to 20.
Test B, 100 Subtraction Facts
Week 1.
Bottoms Up Factoring. Start with the X-box 3-9 Product Sum
Lessons learned from OMI observations of point source SO 2 pollution and suggestions for GEO-CAPE requirements N. Krotkov (NASA/GSFC) V. Fioletov, C. McLinden.
ISTP Oktober Aerosol boomerang: Rapid around-the-world transport of smoke from the December 2006 Australian forest fires observed from.
Observing U.S. urban NO x emissions from Ozone Monitoring Instrument (OMI) satellite retrievals Zifeng Lu, David G. Streets Decision and Information Sciences.
TEMIS user workshop, Frascati, 8-9 October 2007 Status of Central European NO 2 products Dominik Brunner, Daniel Schaub, Brigitte Buchmann Empa, Swiss.
Improvement and validation of OMI NO 2 observations over complex terrain A contribution to ACCENT-TROPOSAT-2, Task Group 3 Yipin Zhou, Dominik Brunner,
Permafrost data Muot da Barba Peider - some first analyses – Evelyn Zenklusen CCES-Extremes Meeting, , EPFL.
1 Surface nitrogen dioxide concentrations inferred from Ozone Monitoring Instrument (OMI) rd GEOS-Chem USERS ` MEETING, Harvard University.
OSMOSIS Primary Production from Seagliders April-September 2013 Victoria Hemsley, Stuart Painter, Adrian Martin, Tim Smyth, Eleanor Frajka-Williams.
Introduction A new methodology is developed for integrating complementary ground-based data sources to provide consistent ozone vertical distribution time.
ICDC7, Boulder, September 2005 CH 4 TOTAL COLUMNS FROM SCIAMACHY – COMPARISON WITH ATMOSPHERIC MODELS P. Bergamaschi 1, C. Frankenberg 2, J.F. Meirink.
Mapping Greenhouse Gas Emissions in the Los Angeles Basin by Remote Sensing Using a Fourier Transform Spectrometer on Mt. Wilson Kam Weng (Clare) Wong.
Algorithms and chemical data assimilation activities at Environment Canada Chris McLinden Air Quality Research Division, Environment Canada 2 nd TEMPO.
Air Quality Forecasting Bas Mijling Ronald van der A AMFIC Annual Meeting ● Beijing ● October 2008.
Indianapolis flux (INFLUX) in-situ network: quantification of urban atmospheric boundary layer greenhouse gas dry mole fraction enhancements 18 th WMO/IAEA.
Presentation by: Dan Goldberg Co-authors: Tim Vinciguerra, Linda Hembeck, Sam Carpenter, Tim Canty, Ross Salawitch & Russ Dickerson 13 th Annual CMAS Conference.
Institute of Environmental Physics and Remote Sensing IUP/IFE-UB Physics/Electrical Engineering Department 1 Measurements.
1 Ground-level nitrogen dioxide concentrations inferred from the satellite-borne Ozone Monitoring Instrument Lok Lamsal and Randall Martin with contributions.
Estimating anthropogenic NOx emissions over the US using OMI satellite observations and WRF-Chem Anne Boynard Gabriele Pfister David Edwards AQAST June.
GPS GPS derived integrated water vapor in aLMo: impact study with COST 716 near real time data Jean-Marie Bettems, MeteoSwiss Guergana Guerova, IAP, University.
Satellite based versus traditional air pollution monitoring: Requirements, limitations, and chances Dominik Brunner, Christoph Hueglin, Christoph Zellweger,
Validation, Day of Week and Seasonal Perspectives on Satellite NO 2 Ronald C. Cohen UC Berkeley.
Retrieval of Methane Distributions from IASI
1 Inferring Ground-level Nitrogen Dioxide Concentrations from OMI Martin Steinbacher, Empa Edward Celarier, SGT Inc. Eric Bucsela, NASA GSFC.
Air Pollution/Environmental Technology laboratory Initial results on OMI NO 2 Validation during CINDI A contribution to the BIRA Cindi Workshop Yipin Zhou,
Henk Eskes, OMI meeting June 2006 OMI Nitrogen Dioxide: The KNMI Near-Real Time Product Henk Eskes, Pepijn Veefkind, Folkert Boersma, Ronald van.
Improving Retrievals of Tropospheric NO 2 Randall Martin, Dalhousie and Harvard-Smithsonian Lok Lamsal, Gray O’Byrne, Aaron van Donkelaar, Dalhousie Ed.
1 Examining Seasonal Variation of Space-based Tropospheric NO 2 Columns Lok Lamsal.
Tropospheric NO2 Ronald van der A, Michel Van Roozendael, Isabelle De Smedt, Ruud Dirksen, Folkert Boersma KNMI and BIRA-IASB Beijing, 23 October 2009.
Air Resources Laboratory 1 Comprehensive comparisons of NAQFC surface and column NO 2 with satellites, surface, and field campaign measurements during.
Evaluation of model simulations with satellite observed NO 2 columns and surface observations & Some new results from OMI N. Blond, LISA/KNMI P. van Velthoven,
1 Relationship between ground-level NO 2 concentrations and OMI tropospheric NO 2 columns Martin Steinbacher, Empa; Edward Celarier, SGT Inc.
Tropospheric NO2 Ronald van der A, Michel Van Roozendael, Isabelle De Smedt, Ruud Dirksen, Folkert Boersma KNMI and BIRA-IASB Barcelona, June 2009.
VERIFICATION Highligths by WG5. 2 Outlook Some focus on Temperature with common plots and Conditional Verification Some Fuzzy verification Long trends.
Validation of OMI and SCIAMACHY tropospheric NO 2 columns using DANDELIONS ground-based data J. Hains 1, H. Volten 2, F. Boersma 1, F. Wittrock 3, A. Richter.
Ground-level NO 2 Concentrations Inferred from OMI Lok Lamsal, Dalhousie University Randall Martin, Dalhousie and Harvard-Smithsonian Aaron van Donkelaar,
Folkert Boersma Collaborators: Daniel J. Jacob, Miri Trainic, Yinon Rudich, Ruud Dirksen, and Ronald van der A Comparison of NO 2 air pollution in Israeli.
Radiative Forcing - Measured at Earth‘s Surface - Explains how Temperature Increases in Europe Rolf Philipona, Bruno Dürr, Christoph Marty, Atsumu Ohmura*
Source apportionment of submicron organic aerosols at an urban site by linear unmixing of aerosol mass spectra V. A. Lanz 1, M. R. Alfarra 2, U. Baltensperger.
NDACC Microwave Workshop, January 11, 2013 Diurnal variability of middle atmospheric H 2 O and comparison with WACCM Dominik Scheiben, Ansgar Schanz, Brigitte.
DOAS workshop 2015, Brussels, July 2015
N. Bousserez, R. V. Martin, L. N. Lamsal, J. Mao, R. Cohen, and B. R
Estimating Ground-level NO2 Concentrations from OMI Observations
COSMO General Meeting 2009 WG5 Parallel Session 7 September 2009
Satellite Remote Sensing of Ground-Level NO2 for New Brunswick
New Swiss Exposure Programme
Retrieval of SO2 Vertical Columns from SCIAMACHY and OMI: Air Mass Factor Algorithm Development and Validation Chulkyu Lee, Aaron van Dokelaar, Gray O’Byrne:
Using satellite observations of tropospheric NO2 columns to infer trends in US NOx emissions: the importance of accounting for the NO2 background Rachel.
Empa, Air Pollution/Environmental Technologies
Presentation transcript:

A comparison of OMI NO 2 VTC with in- situ measurements in Switzerland Dominik Brunner, Brigitte Buchmann, Thomas Seitz, and Martin Steinbacher Empa, Swiss Federal Laboratories for Materials Testing and Research Laboratory for Air Pollution and Environmental Technology 8600 Dübendorf, Switzerland Thanks to Folkert Boersma and Ruud Dirksen (KNMI) for creating the post-analysis near-real time (PA-NRT) OMI data and providing it through TEMIS

50km N Basel Bern Chaumont Davos Dübendorf Härkingen Jungfraujo ch Lägeren Lausanne Lugano Magadino Payerne Rigi Sion Tänikon Zürich 2  Motivation  The NABEL air quality monitoring network in Switzerland  NO x and NO 2 trends since 1980s  Measurements with conventional NO x sensors  Lessons from parallel operation of molybdenum & photolytic converters  Comparison with in situ NO 2 measurements  NO 2 (m) = NO x (molybdenum) - NO  NO 2 (c ) = NO 2 (m) corrected for interferences  Comparison with ground-based NO 2 columns  Measurement stations and method used for computation of columns  Direct comparison with columns integrated over profile  Comparison with averaging kernel weighted columns  Conclusions and outlook Outline Motivation NABEL NO x trends NO x sensors Comparison in-situ NO 2 NO 2 (m) NO 2 (c) Comparison to columns Method Direct Avg. kernel Conclusions & Outlook

50km N Basel Bern Chaumont Davos Dübendorf Härkingen Jungfraujo ch Lägeren Lausanne Lugano Magadino Payerne Rigi Sion Tänikon Zürich 3 Urban, near street Rural < 1000 m amsl Urban, in park Rural > 1000 m amsl Motorway Prealpine, forest Agglomeration Alpine Swiss Air Pollution Monitoring Network (NABEL) Air Pollution/Environmental Technology 50km N Basel Bern Chaumont Davos Dübendorf Härkingen Jungfraujoch Lägeren Lausanne Lugano Magadino Payerne Rigi Sion Tänikon Zürich Outline Motivation NABEL NO x trends NO x sensors Comparison in-situ NO 2 NO 2 (m) NO 2 (c) Comparison to columns Method Direct Avg. kernel Conclusions & Outlook

50km N Basel Bern Chaumont Davos Dübendorf Härkingen Jungfraujo ch Lägeren Lausanne Lugano Magadino Payerne Rigi Sion Tänikon Zürich 4 Assessment of Swiss Air Pollution Policy Swiss National Air Pollution Monitoring Network (NABEL) sulphur dioxide (SO 2 ) nitrogen dioxide (NO 2 ) NABEL measurement station Zurich downtown city background Additional reduction measures needed Air Pollution reduction measures successful Outline Motivation NABEL NO x trends NO x sensors Comparison in-situ NO 2 NO 2 (m) NO 2 (c) Comparison to columns Method Direct Avg. kernel Conclusions & Outlook

50km N Basel Bern Chaumont Davos Dübendorf Härkingen Jungfraujo ch Lägeren Lausanne Lugano Magadino Payerne Rigi Sion Tänikon Zürich 5 Outline Motivation NABEL NO x trends NO x sensors Comparison in-situ NO 2 NO 2 (m) NO 2 (c) Comparison to columns Method Direct Avg. kernel Conclusions & Outlook

50km N Basel Bern Chaumont Davos Dübendorf Härkingen Jungfraujo ch Lägeren Lausanne Lugano Magadino Payerne Rigi Sion Tänikon Zürich 6 NO 2 measurements using conventional NO x sensors with Molybdenum converters PAN Mean annual NO 2 cycles ruralpre-alpine Outline Motivation NABEL NO x trends NO x sensors Comparison in-situ NO 2 NO 2 (m) NO 2 (c) Comparison to columns Method Direct Avg. kernel Conclusions & Outlook

50km N Basel Bern Chaumont Davos Dübendorf Härkingen Jungfraujo ch Lägeren Lausanne Lugano Magadino Payerne Rigi Sion Tänikon Zürich 7 SCIA OMI ~60% high in spring/summer ~20% high in autumn/winter rural pre-alpine NO 2 measurements using conventional NO x sensors with Molybdenum converters Mean diurnal cycles Outline Motivation NABEL NO x trends NO x sensors Comparison in-situ NO 2 NO 2 (m) NO 2 (c) Comparison to columns Method Direct Avg. kernel Conclusions & Outlook

50km N Basel Bern Chaumont Davos Dübendorf Härkingen Jungfraujo ch Lägeren Lausanne Lugano Magadino Payerne Rigi Sion Tänikon Zürich 8 OMI NO 2 VTCs vs. ground-based NO 2 Selection of OMI pixels for given NABEL measurement stations Payerne (rural) Tänikon (rural) Dübendorf (sub-urban) Swiss high-resolution NO x inventory Zurich Bern Basel Geneva Swiss alps Outline Motivation NABEL NO x trends NO x sensors Comparison in-situ NO 2 NO 2 (m) NO 2 (c) Comparison to columns Method Direct Avg. kernel Conclusions & Outlook

50km N Basel Bern Chaumont Davos Dübendorf Härkingen Jungfraujo ch Lägeren Lausanne Lugano Magadino Payerne Rigi Sion Tänikon Zürich 9 OMI NO 2 VTCs vs. ground-based NO 2 Daily hourly mean UTC (13-14 LT) values at Tänikon used for comparison with OMI NO 2 (m), molybdenum converter NO 2 (c), corrected (Steinbacher et al., 2007) Clear sky according to both OMI and ground Outline Motivation NABEL NO x trends NO x sensors Comparison in-situ NO 2 NO 2 (m) NO 2 (c) Comparison to columns Method Direct Avg. kernel Conclusions & Outlook

50km N Basel Bern Chaumont Davos Dübendorf Härkingen Jungfraujo ch Lägeren Lausanne Lugano Magadino Payerne Rigi Sion Tänikon Zürich 10 OMI NO 2 VTCs vs. ground-based NO 2 Fractional cloud cover of OMI pixels over Tänikon Fractional cloud cover Temperature at Tänikon Points identified as clear sky based on global radiation sensor at Tänikon Snow cover Outline Motivation NABEL NO x trends NO x sensors Comparison in-situ NO 2 NO 2 (m) NO 2 (c) Comparison to columns Method Direct Avg. kernel Conclusions & Outlook

50km N Basel Bern Chaumont Davos Dübendorf Härkingen Jungfraujo ch Lägeren Lausanne Lugano Magadino Payerne Rigi Sion Tänikon Zürich 11 NO 2 (m) Direct comparison with volume mixing ratios measured in-situ at Tänikon OMI NO 2 VTCs vs. ground-based NO 2 Corrected NO 2 (c) NO 2 (c) [ppb] NO 2 (m) [ppb] Outline Motivation NABEL NO x trends NO x sensors Comparison in-situ NO 2 NO 2 (m) NO 2 (c) Comparison to columns Method Direct Avg. kernel Conclusions & Outlook

50km N Basel Bern Chaumont Davos Dübendorf Härkingen Jungfraujo ch Lägeren Lausanne Lugano Magadino Payerne Rigi Sion Tänikon Zürich 12 Construction of vertical profiles and VTCs at Tänikon and Payerne from ground based observations at different altitudes OMI NO 2 VTCs vs. ground-based NO 2 VTCs 50km Chaumont Jungfraujoch Lägeren Payerne Rigi Tänikon Combination of measurements at Tänikon539 m amsl Lägeren689 m Rigi1013 m Chaumont1137 m Jungfraujoch3650 m NO 2 (m) at Tänikon vs. Lägeren NO 2 (m) at Chaumont vs. Rigi r=0.89 r=0.75 Outline Motivation NABEL NO x trends NO x sensors Comparison in-situ NO 2 NO 2 (m) NO 2 (c) Comparison to columns Method Direct Avg. kernel Conclusions & Outlook

50km N Basel Bern Chaumont Davos Dübendorf Härkingen Jungfraujo ch Lägeren Lausanne Lugano Magadino Payerne Rigi Sion Tänikon Zürich 13 Selected NO 2 profiles above Tänikon reconstructed from ground-based corrected NO 2 (c) measurements OMI NO 2 VTCs vs. ground-based NO 2 VTCs Outline Motivation NABEL NO x trends NO x sensors Comparison in-situ NO 2 NO 2 (m) NO 2 (c) Comparison to columns Method Direct Avg. kernel Conclusions & Outlook Winter (28. Jan 2006)Summer (18. Aug 2006) Tänikon Lägeren Rigi and Chaumont Jungfraujoch

50km N Basel Bern Chaumont Davos Dübendorf Härkingen Jungfraujo ch Lägeren Lausanne Lugano Magadino Payerne Rigi Sion Tänikon Zürich 14 Direct comparison without using averaging kernels OMI NO 2 VTCs vs. ground-based NO 2 VTCs Outline Motivation NABEL NO x trends NO x sensors Comparison in-situ NO 2 NO 2 (m) NO 2 (c) Comparison to columns Method Direct Avg. kernel Conclusions & Outlook

50km N Basel Bern Chaumont Davos Dübendorf Härkingen Jungfraujo ch Lägeren Lausanne Lugano Magadino Payerne Rigi Sion Tänikon Zürich 15 Ground-based columns using averaging kernels (see Schaub et al., 2006) OMI NO 2 VTCs vs. ground-based NO 2 VTCs Outline Motivation NABEL NO x trends NO x sensors Comparison in-situ NO 2 NO 2 (m) NO 2 (c) Comparison to columns Method Direct Avg. kernel Conclusions & Outlook

50km N Basel Bern Chaumont Davos Dübendorf Härkingen Jungfraujo ch Lägeren Lausanne Lugano Magadino Payerne Rigi Sion Tänikon Zürich 16  NABEL in situ measurements from different stations at different elevations combined to construct vertical profiles  Conventional NO x measurements need correction  Comparison of OMI VTCs with in situ NO 2 VMR shows reasonable to good agreement except for summer  No improvement when using corrected NO 2 (c)  Comparison of OMI VTCs with ground-based reconstructed VTCs shows better agreement than comparison with NO 2 VMR  Using averaging kernels significantly improves agreement between OMI VTCs and reconstructed VTCs  Future: Use photolytic converter measurements at Payerne and Rigi, extend data set to 2007, new OMI data version, try to assess uncertainty of ground-based columns Summary and outlook Outline Motivation NABEL NO x trends NO x sensors Comparison in-situ NO 2 NO 2 (m) NO 2 (c) Comparison to columns Method Direct Avg. kernel Conclusions & Outlook