© John Parkinson 1 MAX PLANCK PHOTOELECTRIC EFFECT.

Slides:



Advertisements
Similar presentations
The Photoelectric Effect
Advertisements

The Photoelectric Effect Key Points. What is it ? Electrons are emitted from zinc when ultraviolet radiation shines on it. Other metals emit electrons.
AS Physics Unit 3 Exam Questions Ks5 AS Physics AQA 2450 Mr D Powell.
Quantum Physics 10 hours.
An Introduction to Quantum
UNIT 24 : QUANTIZATION OF LIGHT
Photoelectric Effect (Quantum Theory of Light) Einstein (1905) created the quantum theory of light, which states that electromagnetic radiation traveled.
Chapter 29 - Particles and Waves. 1.Who won the Nobel prize for his explanation of the photoelectric effect? A.Planck B.Bohr C.De Broglie D.Einstein 2.The.
The Photoelectric Effect Einstein’s Triumph Graphics courtesy of Physics 2000, University of Colorado Presentation Text ©2001 Philip M. Dauber.
Waves. Characteristics of Waves Frequency Amplitude.
PHOTOELECTRIC EFFECT AND DUAL NATURE OF MATTER AND RADIATIONS 1.Photoelectric Effect 2.Experimental Set-up to study Photoelectric Effect 3.Effect of Intensity,
3.2 More about photo electricity The easiest electrons to eject are on the metals surface And will have maximum kinetic energy Other electrons need more.
Waves, Light, Quantum. Figure 4.1: Molar Volume (elements known in 1869) (a few more recently discovered elements added)
6. Atomic and Nuclear Physics Chapter 6.4 Interactions of matter with energy.
 In the last lesson you found out about Planck's hypothesis that radiant energy came in discrete packets called quanta, and that for each frequency or.
1 Chapter 38 Light Waves Behaving as Particles February 25, 27 Photoelectric effect 38.1 Light absorbed as photons: The photoelectric effect Photoelectric.
2. The Particle-like Properties Of Electromagnetic Radiation
Blackbody Radiation & Planck’s Hypothesis
Also know as Topic:13 These notes were typed in association with Physics for use with the IB Diploma Programme by Michael Dickinson For further reading.
MAX PLANCK PHOTOELECTRIC EFFECT © John Parkinson.
Classical vs Quantum Mechanics Rutherford’s model of the atom: electrons orbiting around a dense, massive positive nucleus Expected to be able to use classical.
The photoelectric effect
The Photoelectric E ffect By Eleanor Girdziusz. The Photoelectric Effect “The phenomenon that when light shines on a metal surface, electrons are emitted”
The Photoelectric Effect Textbook: 12.1 Homework: pg. 608 #2, 8,
Zinc Negatively charge Zinc Negatively charge a sheet of zinc. 2. Shine long wavelength radio waves on the zinc. 3. Zinc remains negatively.
11.1 – THE PHOTOELECTRIC EFFECT Setting the stage for modern physics…
AN INTRODUCTION TO… MODERN PHYSICS Maxwell’s – Good to the last…. In 1873, James Clerk Maxwell summarized in 4 equations everything that was known.
NCEA Level 3 Physics  The Photoelectric effect - Experiment - Quantum theory & work function - Wave particle duality  Atomic spectra - Hydrogen line.
Modern Physics Wave Particle Duality of Energy and Matter Is light a particle or a wave? We have see that light acts like a wave from polarization, diffraction,
More About Photoelectricity Quantum Physics Lesson 2.
Chapter 6 Electronic Structure of Atoms Light The study of light led to the development of the quantum mechanical model. Light is a kind of electromagnetic.
Section 11.1 Atoms and Energy 1.To review Rutherford’s model of the atom 2.To explore the nature of electromagnetic radiation 3.To see how atoms emit light.
Thompson’s experiment (discovery of electron) + - V + - Physics at the end of XIX Century and Major Discoveries of XX Century.
The Wave – Particle Duality OR. Light Waves Until about 1900, the classical wave theory of light described most observed phenomenon. Light waves: Characterized.
The Photoelectric Effect Einstein’s Triumph Graphics courtesy of Physics 2000, University of Colorado.
Photons, Electrons, and Atoms. Visible and non-visable light Frequencies around Hz Much higher than electric circuits Theory was about vibrating.
Topic 13 Quantum and nuclear physics. The Quantum nature of radiation For years it was accepted that light travels as particles (though with little direct.
Modern Physics Quantum Effects 1773 – 1829 Objectives  Explain the photoelectric effect and recognize that quantum theory can explain it, but wave theory.
Photoelectric Effect. Basically, the photoelectric effect is the ejecting of electrons from a metal by shining light of a particular frequency on it.
PARTICLE NATURE OF LIGHT. A Black Object Appears black because it absorbs all frequencies of light A black block of iron does this.
Development of a New Atomic Model Properties of Light.
ELECTROMAGNETIC RADIATION subatomic particles (electron, photon, etc) have both PARTICLE and WAVE properties Light is electromagnetic radiation - crossed.
Modern Atomic Theory Quantum Theory and the Electronic Structure of Atoms Chapter 11.
THE PHOTOELECTRIC EFFECT Objective: Demonstrate the particle nature of light by discussing photoelectric effect. Albert EinsteinTM HUJ,
PHOTO ELECTRIC EFFECT. When red light is incident on a clean metal surface: no electrons are released, no electrons are released, however long light is.
QUANTUM AND NUCLEAR PHYSICS. Wave Particle Duality In some situations light exhibits properties that are wave-like or particle like. Light does not show.
1© Manhattan Press (H.K.) Ltd Photoelectric effect Investigation of photoelectric effect Explanation of photoelectric effect by quantum theory Types.
Photon-matter interactions Contents: Photoelectric effect Compton scattering Pair production.
1.2 The puzzling photoelectric effect
EMR 2.  When Hertz was testing Maxwell’s theory of electromagnetic waves he discovered that ultraviolet light caused some metallic surfaces to lose their.
Lecture_04: Outline Photoelectric Effect  Experimental facts  Einstein’s explanation  Problems.
AS LEVEL PHYSICS: ELECTRONS AND PHOTONS Quantum Physics : The Photoelectric Effect By the end of this presentation you should …. Appreciate that the photoelectric.
The Physics of Photovoltaics: Effectiveness and Efficiency.
MAX PLANCK PHOTOELECTRIC EFFECT © John Parkinson.
Origin of Quantum Theory
Lecture 20 Light and Quantized Energy Ozgur Unal
Atomic Physics & Quantum Effects
PHOTOELECTRIC EFFECT hhhhh 12/4/2018.
THE PHOTOELECTRIC EFFECT
Chapter 27 Early Quantum Theory
I. Waves & Particles (p ) Ch. 4 - Electrons in Atoms I. Waves & Particles (p )
Waves and particles Ch. 4.
Interaction of Electromagnetic Radiation with Matter
More About Photoelectricity
Physics at the end of XIX Century Major Discoveries of XX Century
Electron Configurations
The Electronic Structure of Atoms
Key Areas covered Photoelectric effect as evidence for the particulate nature of light Photons of sufficient energy can eject electrons from the surface.
Ch. 5 - Electrons in Atoms Waves & Particles.
Unit 2 Particles and Waves Photoelectric Effect
Presentation transcript:

© John Parkinson 1 MAX PLANCK PHOTOELECTRIC EFFECT

© John Parkinson 2 THE PHOTOELECTRIC EFFECT THIS IS THE EMISSION OF ELECTRONS FROM MATTER WHEN MATTER IS ILLUMINATED BY CERTAIN TYPES OF ELECTROMAGNETIC RADIATION. THE EFFECT OCCURS WHEN METALS ARE ILLUMINATED BY UV LIGHT AND CAN OCCUR WITH THE ALKALI METALS FOR VISIBLE LIGHT. IT WAS FIRST OBSERVED BY HEINRICH HERTZ IN 1887

© John Parkinson 3 Radiation mA Anode +ve Cathode -ve electrons The electromagnetic radiation releases electrons from the metal cathode. These electrons are attracted to the anode and complete a circuit allowing a current to flow vacuum

© John Parkinson 4 If the polarity is reversed, the pd across the tube can be increased until even the most energetic electrons fail to cross the tube to A. The milliammeter then reads zero. mA A C Radiation electrons The p.d. across the tube measures the maximum kinetic energy of the ejected electrons in electron volts. V

© John Parkinson 5 At the end of the nineteenth century, Classical Electromagnetic Wave Theory thought of light waves as being like water waves. The waves Intensity or energy was directly proportional to the square of the Amplitude, A. A

© John Parkinson 6 Potassium metal undergoes photoemission with blue and green light, but not with red light. potassium metal e e Emission! Nothing!! Blue light Green light Red light

© John Parkinson 7 THE CLASSICAL THEORY SUGGESTS TRYING MORE INTENSE LIGHT potassium metal Nothing!!Nothing!!

© John Parkinson 8 The Classical Theory must be wrong!!!!!

© John Parkinson 9 Quantum Theory of the Photoelectric Effect In 1905 Einstein developed Plancks idea, that energy was quantised in quanta or photons, in order to explain the photoelectric effect. Electromagnetic radiation is emitted in bursts of energy – photons. The energy of a photon is given by E = hf, where f is the frequency of the radiation and h is Plancks constant. [h = 6.6 x Js] But velocity of light = frequency times wavelength Substituting into E = hf

© John Parkinson 10 the visible spectrum λ frequency violet light light 400 nm red light light 700 nm uv light < 400 nm Blue photon Red photon Which photon has the most energy ????? BLUE !!!

© John Parkinson 11 Quantum Theory of the Photoelectric Effect Because of the interaction of this electron with other atoms, it requires a certain minimum energy to escape from the surface. The photons are sufficiently localized, so that the whole quantum of energy [ hf ] can be absorbed by a single electron at one time. The electron can then either share its excess energy with other electrons and the ion lattice or it can use the excess energy to fly out of the metal. The minimum energy required to escape depends on the metal and is called the work function, Φ.

© John Parkinson 12 For electron emission, the photon's energy has to be greater than the work function. The maximum kinetic energy the released electron can have is given by: E K = hf - Φ For every metal there is a threshold frequency, f 0, where hf 0 = Φ, that gives the photon enough energy to produce photoemission. It follows that the photo electric current is proportional to the intensity of the radiation provided the frequency of radiation is above threshold frequency. The number of photoelectrons emerging from the metal surface per unit time is proportional to the number of photons striking the surface that in turn depends on the intensity of the incident radiation E K = photon energy – the work function.

© John Parkinson 13 Maximum E K emitted electrons / J Frequency f / Hz metal A Work function, Φ Threshold frequency f 0 metal B E K = hf - Φ Gradient of each graph = Plancks constant, h.

© John Parkinson 14 f / Hz Max E k / eV 1 2 PotassiumMagnesiumAluminium

© John Parkinson 15 Summary For any metal there is a minimum threshold frequency, f 0, of the incident radiation, below which no emission of electrons takes place, no matter what the intensity of the incident radiation is or for how long it falls on the surface. Electrons emerge with a range of velocities from zero up to a maximum. The maximum kinetic energy, E k, is found to depend linearly on the frequency of the radiation and to be independent of its intensity. For incident radiation of a given frequency, the number of electrons emitted per second is proportional to the intensity of the radiation. Electron emission takes place immediately after the light shines on the metal with no detectable time delay.