Nanophotonics Class 5 Rare earth and quantum dot emitters.

Slides:



Advertisements
Similar presentations
Chapter 2-1. Semiconductor models
Advertisements

Signal enhancement and limiting factors in waveguides containing Si nanoclusters and Er 3+ ions D. Navarro Urrios, N. Daldosso, L. Ferraioli, F. Gourbilleau,
Site occupancies in the R 2-x Fe 14+2x Si 3 (R = Ce, Nd, Gd, Dy, Ho, Er, Lu, Y) compounds studied by Mössbauer spectroscopy A. Błachowski 1, K. Ruebenbauer.
A new route for the hydrothermal synthesis of Eu doped tin oxide nanoparticles D. Tarabasanu-Mihaila 1 *, L. Diamandescu 1, M. Feder 1, S. Constantinescu.
Femtosecond lasers István Robel
Absorption and generation of light with silicon nanocrystals in SiO 2 Amsterdam Master of Physics Symposium 2008 Dolf Timmerman Van der Waals-Zeeman Institute.
WZI seminar Si nanocrystals as sensitizers for Er 3+ PL in SiO 2 M. Wojdak Van der Waals - Zeeman Institute, University of Amsterdam Valckenierstraat.
Nanophotonics Class 3 Photonic Crystals. Definition: A photonic crystal is a periodic arrangement of a dielectric material that exhibits strong interaction.
Nanophotonics Week 8 November 16, 2007 Rare earth and quantum dot emitters.
Nanophotonics Class 2 Surface plasmon polaritons.
Chapter 9. PN-junction diodes: Applications
1 Mechanism for suppression of free exciton no-phonon emission in ZnO tetrapod nanostructures S. L. Chen 1), S.-K. Lee 1), D. Hongxing 2), Z. Chen 2),
Applications of UV-Vis Spectroscopy
Division of Materials Science & Engineering
Optical properties of infrared emission quaternary InGaAsP epilayers Y. C. Lee a,b, J. L. Shen a, and W. Y. Uen b a. Department of Computer Science and.
Building a Continuous Wave Erbium Doped Fiber Laser and Amplifier Ben Baker Kristen Norton.
High Speed Circuits & Systems Laboratory Joungwook Moon
Industrial Affiliates Workshop, March 2004 Planar Ion-Exchanged Glass Waveguide Devices Seppo Honkanen, Brian West and Sanna Yliniemi Optical Sciences.
Harald Lück, AEI Hannover 1 GWADW- May, 10-15, 2009 EU contract #
Space-Separated Quantum Cutting Anthony Yeh EE C235, Spring 2009.
___________________________________________ Group meeting, Feb _____________________________________________ Manuel Forcales.
Ch 6: Optical Sources Variety of sources Variety of sources LS considerations: LS considerations: Wavelength Wavelength  Output power Output power Modulation.
May be regarded as a form of electromagnetic radiation, consisting of interdependent, mutually perpendicular transverse oscillations of an electric and.
Characterization of fiber amplifiers Lecture-5. EDFA architecture Figure: EDFA architecture Characterization of DFA.
9. Semiconductors Optics Absorption and gain in semiconductors Principle of semiconductor lasers (diode lasers) Low dimensional materials: Quantum wells,
Copyright 2011 CreativeChemistryLessons.comCreativeChemistryLessons.comRemember! Metals LOSE Electrons (CATIONS)Metals LOSE Electrons (CATIONS) Non-Metals.
Optical Amplifiers An Important Element of WDM Systems Xavier Fernando ADROIT Group Ryerson University.
Quantum Effects Quantum dots are semiconducting single crystals with almost zero defects ranging in size from 1 to 20 nanometers. Quantum dots can be synthesized.
Nanophotonics Prof. Albert Polman Center for Nanophotonics FOM-Institute AMOLF, Amsterdam Debye Institute, Utrecht University.
High power ultrafast fiber amplifiers Yoann Zaouter, E. Cormier CELIA, UMR 5107 CNRS - Université de Bordeaux 1, France Stephane Gueguen, C. Hönninger,
Overview of course Capabilities of photonic crystals Applications MW 3:10 - 4:25 PMFeatheringill 300 Professor Sharon Weiss.
Nanophotonics Prof. Albert Polman Center for Nanophotonics FOM-Institute AMOLF, Amsterdam Debye Institute, Utrecht University.
Nanophotonics Class 4 Density of states. Outline Spontaneous emission: an exited atom/molecule/.. decays to the ground state and emits a photon Emission.
Nanomaterials – Electronic Properties Keya Dharamvir.
Some of the applications of Photonic Crystals (by no means a complete overview) Prof. Maksim Skorobogatiy École Polytechnique de Montréal.
Observation of Excited Biexciton States in CuCl Quantum Dots : Control of the Quantum Dot Energy by a Photon Itoh Lab. Hiroaki SAWADA Michio IKEZAWA and.
Influence of oxygen content on the 1.54 μm luminescenceof Er-doped amorphous SiO x thin films G.WoraAdeola,H.Rinnert *, M.Vergnat LaboratoiredePhysiquedesMate´riaux.
Alan Kost Frontiers in Optics Tucson, AZ October 20, 2005 Monolithically Integrated Semiconductor Components for Coarse Wavelength Division Multiplexing.
Quantum Dot Nucleation in Glass Microsphere Resonators Anu Tewary (student) and Mark Brongersma (PI) Stanford University, DMR A thin layer of Si-rich.
Absorption Spectra of Nano-particles
Nanophotonics Prof. Albert Polman Center for Nanophotonics
Light trapping with particle plasmons Kylie Catchpole 1,2, Fiona Beck 2 and Albert Polman 1 1 Center for Nanophotonics, FOM Institute AMOLF Amsterdam,
Quenching of Fluorescence and Broadband Emission in Yb 3+ :Y 2 O 3 and Yb 3+ :Lu 2 O 3 3rd Laser Ceramics Symposium : International Symposium on Transparent.
1 Quantum phosphors Observation of the photon cascade emission process for Pr 3+ - doped phosphors under vacuum ultraviolet (VUV) and X-ray excitation.
Particle in a “box” : Quantum Dots
O. Jambois, Optics Express, 2010 Towards population inversion of electrically pumped Er ions sensitized by Si nanoclusters Jeong-Min Lee
From an Atom to a Solid Photoemission spectra of negative copper clusters versus number of atoms in the cluster. The highest energy peak corres- ponds.
Spectroscopy of Luminescent Crystals Containing Rare Earth Elements Meng-Ling Chen, Kwang-Hwa Lii, and Bor-Chen Chang Department of Chemistry National.
High Power Cladding-pumped Fiber Laser Speaker: Shiuan-Li Lin Advisor : Sheng-Lung Huang Solid-State Laser Crystal and Device Laboratory.
Optical Investigation of Gold Shell Enhanced 25 nm Diameter Upconverted Fluorescence Emission AUTHORS : KORY GREEN, JANINA WIRTH AND SHUANG FANG LIM -
Laser activities at University of Pavia in support to SPES project Daniele Scarpa.
Erbium-doped fiber amplifiers Joonas Leppänen Emma Kiljo Jussi Taskinen Niklas Heikkilä Alexander Permogorov Group 3 EDFA Photonics.
When and who? In 1869 Russian Chemist Dimitri Mendeleev and German chemist Lothar Meyer published nearly identical ways of classifying.
KTH ROYAL INSTITUTE OF TECHNOLOGY Rare earth doped waveguide lasers and amplifiers Dimitri Geskus Department of Materials and Nano Physics KTH - Royal.
Date of download: 7/9/2016 Copyright © 2016 SPIE. All rights reserved. Comparison of luminescence spectra for Tm3+/Yb3+ codoped bulk ZLAG glass and ZLA.
Nanophotonics Prof. Albert Polman Center for Nanophotonics
Semiconductor Nanocrystals
Chapter 9. Optoelectronic device
Luminescent Periodic Microstructures for Medical Applications
by: Mrs. Aboli N. Moharil Assistant Professor, EXTC dept.
Interaction between Photons and Electrons
Presentation series Photon Physics, UU April 9, 2009 Marlous Kamp
L. Di Labio, W. Lüthy, V. Romano, T. Feurer Transitions and mechanisms
Emission of Energy by Atoms and Electron Configurations
Introduction to Optoelectronics Optical communication (3) Optical components Prof. Katsuaki Sato.
4.2 IONIZATION ENERGY 4.6 TABLE 4.2 Ionization Energy of the Elements
Line Spectra and the Bohr Model
Electron Configurations and the Periodic Table
Slab waveguide solution
Presentation transcript:

Nanophotonics Class 5 Rare earth and quantum dot emitters

HHe LiBeB CNOFNe NaMgAlSiPSClAr KCaScTiVCrMnFeCoNiCuZnGaGeAsSeBrKr RbSrYZrNbMoTcRuRhPdAgCdInSnSbTeIXe CsBaLaHfTaWReOsIrPtAuHgTlPbBiPoAtRn FrRaAcRfDbSgBhHsMtUunUuuUub CePrNdPmSmEuGdTbDyHo Er TmYbLu ThPaUNpPuAmCmBkCfEsFmMdNoLr La 3+ : [Xe] 4f n n=1-14 ….4f n 5s 2 5p 6 Optical doping with lanthanide ions

Energy levels of lanthanide ions 1.5 µm E gap (Si)

Ce Pr Nd Pm Sm Eu Gd Tb Dy Ho Er Tm Yb Lu

Europium protects the euro J.F. Suyver, A. Meijerink (UU )

Lanthanide bar codes Dejneka, PNAS 100, (2003)

HHe LiBeB CNOFNe NaMgAlSiPSClAr KCaScTiVCrMnFeCoNiCuZnGaGeAsSeBrKr RbSrYZrNbMoTcRuRhPdAgCdInSnSbTeIXe CsBaLaHfTaWReOsIrPtAuHgTlPbBiPoAtRn FrRaAcRfDbSgBhHsMtUunUuuUub CePrNdPmSmEuGdTbDyHo Er TmYbLu ThPaUNpPuAmCmBkCfEsFmMdNoLr La 3+ : [Xe] 4f n n=1-14 ….4f n 5s 2 5p 6 Optical doping with lanthanide ions

Chemistry (outer-shell behavior) is similar A. Polman et al., Appl. Phys. Lett. 62, 507 (1993), J.S. Custer et al., J. Appl. Phys. 75, 2809 (1994) ErbiumPrasaeodymium

Silica optical fiber transmission spectrum Hz 1.3  m 1.55  m Miya et al., Electron. Lett. 15, 108 (1979) wavelength vs. time division multiplexing: WDM

Erbium transition at 1.5  m

Er absorption and emission cross sections absorption emission G.N. van den Hoven et al. Appl. Opt. 36, 3338 (1997)

Erbium photoluminescence in various silicate glasses W tot =W rad +C Er-Er  [Er]  [OH ] A. Polman, J. Appl. Phys. 82, 1 (1997)

EXAFS Local structure around Er in silicate glasses M.A. Marcus et al., J. of Non-Cryst. Solids 136, 260 (1991)

Planar optical waveguide Si high index low index Waveguide core materials: silica glass Al 2 O 3, Si 3 N 4, …. polymer silicon

Photonic integrated circuits on silicon 1 mm SiO 2 /Al 2 O 3 /SiO 2 /Si Al 2 O 3 technology by M.K. Smit et al., TUD

The world’s smallest erbium-doped optical amplifier 1.53  m signal, 1.48  m pump, 10 mW, gain: 2.3 dB Waveguide spiral size: 1 mm 2 minimum bending radius > 50  m Appl. Phys. Lett. 68, 1886 (1996)

From a FOM prototype to a 40 M$ company … Symmorphix Sunnyvale CA, USA

1.5 µm microcavity mode imaged through green upconversion 2 MeV Er implantation, 0.35 at.%, °C anneal T.J. Kippenberg et al.

Quantum dot emitters

Indirect bandstructure Silicon is an inefficient light emitter

Si:Er light-emitting diode G. Franzó et al., Appl. Phys. Lett. 64, 2235 (1994), B. Zheng et al., Appl. Phys. Lett. 64, 2842 (1994) Er, O doped c-Si

5  m SiO keV Si, 1.7  cm -2 anneal: 1100  C  nanocrystals: 3-5 nm  Silicon quantum dots: particles in a box

X-ray Photo-electron spectroscopy

Luminescence spectrum depends on Si concentration red-shift for larger nanocrystal size 50 keV Si, 1100 o C/10 min, 500 eV D, 3  cm -2  E = meV Bulk Si bandgap 1100 nm

Si + O 2  Si + SiO 2 Shrinking Si quantum dots by oxidation: blue shift  E = meV

5 nm PbS: rock-salt structure Nearly spherical shape, crystal facets Compound semiconductor quantum dots: PbS Modified slide from D. Vanmaekelbergh

CdSe: wurtzite Modified slide from D. Vanmaekelbergh Compound semiconductor quantum dots: CdSe

Modified slide from D. Vanmaekelbergh Luminescence from compound semiconductor quantum dots