Peter Athron David Miller In collaboration with Quantifying Fine Tuning (arXiv:0705.2241, Phys.Rev.D76:075010, 2007. arXiv:0707.1255 [hep-ph], AIP Conf.Proc.903:373-376,2007.

Slides:



Advertisements
Similar presentations
SUSY Higgs with Non-perturbative effects Yukihiro Mimura (National Taiwan University) Based on PLB718 (2013) Collaboration with N. Haba, K. Kaneta,
Advertisements

Fine Tuning Standard Model and Beyond Peter Athron Dr David Miller In collaboration with.
THE FINE-TUNING PROBLEM IN SUSY AND LITTLE HIGGS
Kiwoon Choi PQ-invariant multi-singlet NMSSM
Lecture 8 TexPoint fonts used in EMF. Read the TexPoint manual before you delete this box.: AAAAA A A A A A A A.
Peter Athron David Miller In collaboration with Fine Tuning.
Peter Athron David Miller In collaboration with Measuring Fine Tuning.
Peter Athron David Miller In collaboration with Fine Tuning In Supersymmetric Models.
Peter Athron David Miller In collaboration with Quantifying Fine Tuning (arXiv: )
Effective Operators in the MSSM Guillaume Drieu La Rochelle, LAPTH.
KET-BSM meeting Aachen, April 2006 View from the Schauinsland in Freiburg a couple of weeks ago View from the Schauinsland in Freiburg a couple of weeks.
A Realization of Effective SUSY Zhen-hua Zhao ITP,CAS Liu & Zhao arXiv:
Joe Sato (Saitama University ) Collaborators Satoru Kaneko,Takashi Shimomura, Masato Yamanaka,Oscar Vives Physical review D 78, (2008) arXiv:1002.????
Higgs Boson Mass In Gauge-Mediated Supersymmetry Breaking Abdelhamid Albaid In collaboration with Prof. K. S. Babu Spring 2012 Physics Seminar Wichita.
F. Richard Feb 2003 A Z’ within the ‘Little Higgs’ Scenario The LHC/LC Study group meeting CERN.
Intro to neutralino dark matter Pearl Sandick University of Minnesota.
Comprehensive Analysis on the Light Higgs Scenario in the Framework of Non-Universal Higgs Mass Model M. Asano (Tohoku Univ.) M. Senami (Kyoto Univ.) H.
Richard Howl The Minimal Exceptional Supersymmetric Standard Model University of Southampton UK BSM 2007.
The Top Quark and Precision Measurements S. Dawson BNL April, 2005 M.-C. Chen, S. Dawson, and T. Krupovnikas, in preparation M.-C. Chen and S. Dawson,
Hunting for New Particles & Forces. Example: Two particles produced Animations: QPJava-22.html u u d u d u.
Looking for SUSY Dark Matter with ATLAS The Story of a Lonely Lepton Nadia Davidson Supervisor: Elisabetta Barberio.
B. Dutta Texas A&M University Phys.Rev.Lett.99:261301, 2007; To appear Inflation, Dark Matter and Neutrino Masses Collaborators: Rouzbeh Allahverdi, Anupam.
The Ideas of Unified Theories of Physics Tareq Ahmed Mokhiemer PHYS441 Student.
6/28/2015S. Stark1 Scan of the supersymmetric parameter space within mSUGRA Luisa Sabrina Stark Schneebeli, IPP ETH Zurich.
.. Particle Physics at a Crossroads Meenakshi Narain Brown University.
The Higgs boson and its mass. LHC : Higgs particle observation CMS 2011/12 ATLAS 2011/12.
CERN, 21 February 2001 Egil Lillestøl, CERN & Univ. of Bergen Recorded at
SUSY Dark Matter Collider – direct – indirect search bridge. Sabine Kraml Laboratoire de Physique Subatomique et de Cosmologie Grenoble, France ● 43. Rencontres.
 Collaboration with Prof. Sin Kyu Kang and Prof. We-Fu Chang arXiv: [hep-ph] submitted to JHEP.
The Electroweak Phase Transition within natural GNMSSM models Presenter: Christopher Harman Supervisor: Dr. Stephan Huber University of Sussex Image courtesy.
A.F.Kord Sabzevar Tarbiat Moallem University (Iran) September 2011.
Center for theoretical Physics at BUE
Low scale gravity mediation in warped extra dimensions and collider phenomenology on sector hidden sector LCWS 06, March 10, Bangalore Nobuchika.
Wednesday, Apr. 23, 2003PHYS 5326, Spring 2003 Jae Yu 1 PHYS 5326 – Lecture #24 Wednesday, Apr. 23, 2003 Dr. Jae Yu Issues with SM picture Introduction.
Test Z’ Model in Annihilation Type Radiative B Decays Ying Li Yonsei University, Korea Yantai University, China Based on J. Hua, C.S Kim, Y. Li, arxiv:
Supersymmetric Models with 125 GeV Higgs Masahiro Yamaguchi (Tohoku University) 17 th Lomonosov Conference on Elementary Particle Physics Moscow State.
Oct, 2003WIN'03, Katri Huitu1 Probing the scalar sector with ZZH outline: Introduction Models: higher representations radion (nonSUSY/SUSY) Conclusions.
Neutralino Dark Matter in Light Higgs Boson Scenario (LHS) The scenario is consistent with  particle physics experiments Particle mass b → sγ Bs →μ +
Dark matter in split extended supersymmetry in collaboration with M. Quiros (IFAE) and P. Ullio (SISSA/ISAS) Alessio Provenza (SISSA/ISAS) Newport Beach.
1 Supersymmetry Yasuhiro Okada (KEK) January 14, 2005, at KEK.
1 THEORETICAL PREDICTIONS FOR COLLIDER SEARCHES “Big” and “little” hierarchy problems Supersymmetry Little Higgs Extra dimensions G.F. Giudice CERN.
Low scale supergravity mediation in brane world scenario and hidden sector phenomenology Phys.Rev.D74:055005,2006 ( arXiv: hep-ph/ ) ACFA07 in Beijing:
Nonlinear Supersymmetric Higgs bosons Sun Kun Oh (Konkuk Univ) APCTP 2010 LHC Physics Workshop at Korea 10-12, August, 2010, Konkuk University.
INVASIONS IN PARTICLE PHYSICS Compton Lectures Autumn 2001 Lecture 8 Dec
WHAT BREAKS ELECTROWEAK SYMMETRY ?. We shall find the answer in experiments at the LHC? Most likely it will tells us a lot about the physics beyond the.
22 December 2006Masters Defense Texas A&M University1 Adam Aurisano In Collaboration with Richard Arnowitt, Bhaskar Dutta, Teruki Kamon, Nikolay Kolev*,
Electroweak Symmetry Breaking without Higgs Bosons in ATLAS Ryuichi Takashima Kyoto University of Education For the ATLAS Collaboration.
1 Prospect after discoveries of Higgs/SUSY Yasuhiro Okada (KEK) “Discoveries of Higgs and Supersymmetry to Pioneer Particle Physics in the 21 st Century”
Latest New Phenomena Results from Alexey Popov (IHEP, Protvino) For the DO Collaboration ITEP, Moscow
Supersymmetry Basics: Lecture II J. HewettSSI 2012 J. Hewett.
The Search For Supersymmetry Liam Malone and Matthew French.
Jonathan Nistor Purdue University 1.  A symmetry relating elementary particles together in pairs whose respective spins differ by half a unit  superpartners.
M. Frank, K. H., S.K. Rai (arXiv: ) Phys.Rev.D77:015006, 2008 D. Demir, M. Frank, K. H., S.K. Rai, I.Turan ( arXiv: ) Phys.Rev.D78:035013,
Phenomenology of NMSSM in TeV scale mirage mediation
Origin of large At in the MSSM with extra vector-like matters
Takaaki Nomura(Saitama univ)
1-lepton + Multijets Analysis bRPV interpretation
WHAT IS Msusy? I am grateful to the Organisers for this title! I understand it reflects certain frustration….
Dark Matter Phenomenology of the GUT-less CMSSM
Grand Unified Theories and Higgs Physics
Fine Tuning In Supersymmetric Models
Measuring Fine Tuning Peter Athron In collaboration with David Miller.
NMSSM & B-meson Dileptonic Decays
The MESSM The Minimal Exceptional Supersymmetric Standard Model
Supersymmetry, naturalness and environmental selection
非最小超对称唯象研究: 工作汇报 杨 金 民 中科院 理论物理所 南开大学.
The Mysteries of Particle Physics and how we are trying to solve them
Jun Nishimura (KEK, SOKENDAI) JLQCD Collaboration:
Prospect after discoveries of Higgs/SUSY
Presentation transcript:

Peter Athron David Miller In collaboration with Quantifying Fine Tuning (arXiv: , Phys.Rev.D76:075010, arXiv: [hep-ph], AIP Conf.Proc.903: ,2007. arXiv: [hep-ph] )

Outline Motivations for supersymmetry  Hierarchy problem Little Hierarchy Problem (of Susy) Traditional Tuning Measure New tuning measure Applications  SM  Toy model  MSSM

Supersymmetry  Only possible extension to Poincare symmetry  Unifies gauge couplings  Provides Dark Matter candidates  Leptogenesis in the early universe  Elegant solution to the Hierarchy Problem!  Essential ingredient for M-Theory

 Expect New Physics at Planck Energy (Mass) Hierarchy Problem  Higgs mass sensitive to this scale  Supersymmetry (SUSY) removes quadratic dependence Enormous Fine tuning! SUSY?  Standard Model (SM) of particle physics  Eliminates fine tuning  Beautiful description of Electromagnetic, Weak and Strong forces  Neglects gravitation, very weak at low energies (large distances)

Little Hierarchy Problem  Constrained Minimal Supersymmetric Standard Model (CMSSM)  Z boson mass predicted from CMSSM parameters Fine tuning?

Superymmetry Models with extended Higgs sectors  NMSSM  nMSSM  E 6 SSM Supersymmetry Plus  Little Higgs  Twin Higgs Alternative solutions to the Hierarchy Problem  Technicolor  Large Extra Dimensions  Little Higgs  Twin Higgs Need a reliable, quantitative measure of fine tuning to judge the success of these approaches. Solutions?

J.R. Ellis, K. Enqvist, D.V. Nanopoulas, & F.Zwirner (1986) R. Barbieri & G.F. Giudice, (1988) Define Tuning is fine tuned % change in from 1% change in Observable Parameter Traditional Measure  J. A. Casas, J. R. Espinosa and I. Hidalgo (2004)

Limitations of the Traditional Measure  Considers each parameter separately  Fine tuning is about cancellations between parameters.  A good fine tuning measure considers all parameters together.  Implicitly assumes a uniform distribution of parameters  Parameters in L GUT may be different to those in L SUSY  parameters drawn from a different probability distribution  Takes infinitesimal variations in the parameters  Observables may look stable (unstable) locally, but unstable (stable) over finite variations in the parameters.  Considers only one observable  Theories may contain tunings in several observables  Global Sensitivity (discussed later)

parameter space volume restricted by, Parameter space point, Unnormalised Tuning: New Measure `` Compare dimensionless variations in ALL parameters With dimensionless variations in ALL observables

Global Sensitivity Consider: responds sensitively to All values of appear equally tuned! throughout the whole parameter space (globally) All are atypical? True tuning must be quantified with a normalised measure G. W. Anderson & D.J Castano (1995) Only relative sensitivity between different points indicates atypical values of

parameter space volume restricted by, Parameter space point, Unnormalised Tunings New Measure Normalised Tunings mean value `` `` AND

Probability of random point lying in : Probability of a point lying in a “typical” volume: New Measure Define: We can associate our tuning measure with relative improbability! volume with physical scenarios qualitatively “similar” to point P

Standard Model Obtain over whole parameter range:

Four observables, three parameters Large cancellations ) fine tuning

Choose a point P in the parameter space at GUT scale Take random fluctuations about this point. Using a modified version of Softsusy (B.C. Allanach)  Run to Electro-Weak Symmetry Breaking scale.  Predict M z and sparticle masses Count how many points are in F and in G. Apply fine tuning measure Fine Tuning in the CMSSM

Tuning in

Tuning

m 1/2 (GeV)

“Natural” Point 1

“Natural” Point 2

If we normalise with NP1If we normalise with NP2 Tunings for the points shown in plots are:

Naturalness comparisons of BSM models need a reliable tuning measure, but the traditional measure neglects:  Many parameter nature of fine tuning;  Tunings in other observables;  Behaviour over finite variations;  Probability dist. of parameters;  Global Sensitivity.  New measure addresses these issues and:  Demonstrates and increase with.  Naïve interpretation: tuning worse than thought.  Normalisation may dramatically change this.  If we can explain the Little hierarchy Problem.  Alternatively a large may be reduced by changing parameterisation.  Could provide a hint for a GUT. Fine Tuning Summary

For our study of tuning in the CMSSM we chose a grid of points: Plots showing tuning variation in m 1/2 were obtained by taking the average tuning for each m 1/2 over all m 0. Plots showing tuning variation in m 0 were obtained by taking the average tuning for each m 0 over all m 1/2. Technical Aside To reduce statistical errors: