DATA STRUCTURE “Linked Lists” SHINTA P STMIK MDP April 2011.

Slides:



Advertisements
Similar presentations
Chapter 25 Lists, Stacks, Queues, and Priority Queues
Advertisements

Chapter 22 Implementing lists: linked implementations.
Linked Lists Geletaw S..
Linked Lists.
Chapter 3: Linked List Tutor: Angie Hui
Addition Facts
Pointers and Data Structures 1 Yinzhi Cao Modified from slides made by Prof Goce Trajcevski.
Inserting a Node into a Specified Position of a Linked List To create a node for the new item newNode = new Node(item); To insert a node between two nodes.
Lists CS 3358.
Chapter 17 Linked Lists.
COMP171 Fall 2005 Lists.
Chapter 4 Linked Lists. © 2005 Pearson Addison-Wesley. All rights reserved4-2 Preliminaries Options for implementing an ADT List –Array has a fixed size.
Singly Linked Lists What is a singly-linked list? Why linked lists?
DATA STRUCTURES AND ALGORITHMS Prepared by İnanç TAHRALI
Linked Lists.
Linked Lists Chapter 4.
1/27 COP 3540 Data Structures with OOP Chapter 5 Linked Lists.
1111 Abstract Data Types Cpt S 223. School of EECS, WSU.
Linear Lists – Linked List Representation
Data Structures: A Pseudocode Approach with C
Data Structures ADT List
DATA STRUCTURES USING C++ Chapter 5
Chapter 24 Lists, Stacks, and Queues
Main Index Contents 11 Main Index Contents Shifting blocks of elements… Shifting blocks of elements… Model of a list object… Model of a list object… Sample.
ITEC200 Week04 Lists and the Collection Interface.
Copyright © 2007 Pearson Education, Inc. Publishing as Pearson Addison-Wesley. Ver Chapter 4: Linked Lists Data Abstraction & Problem Solving with.
Alan YorinksLecture 7 1 • Tonight we will look at:: • List ADT • Unsorted List • Sequential Search • Selection Sort • Sorted List • Binary Search.
ADTs unsorted List and Sorted List
Data Structures Using C++
Linked List 1. Introduction to Linked List 2. Node Class 3. Linked List 4. The Bag Class with Linked List.
Linked Lists Ping Zhang 2010/09/29. 2 Anatomy of a linked list A linked list consists of: –A sequence of nodes abcd Each node contains a value and a link.
Double-Linked Lists and Circular Lists
Chapter 1 Object Oriented Programming 1. OOP revolves around the concept of an objects. Objects are created using the class definition. Programming techniques.
1 DATA STRUCTURES. 2 LINKED LIST 3 PROS Dynamic in nature, so grow and shrink in size during execution Efficient memory utilization Insertion can be.
CSCI2100B Linked List Jeffrey
CSE Lecture 12 – Linked Lists …
1 Designing Hash Tables Sections 5.3, 5.4, Designing a hash table 1.Hash function: establishing a key with an indexed location in a hash table.
Nyhoff, ADTs, Data Structures and Problem Solving with C++, Second Edition, © 2005 Pearson Education, Inc. All rights reserved Hash Tables,
Review Pseudo Code Basic elements of Pseudo code
Linked Lists.
Linked Lists.
Backup Slides. An Example of Hash Function Implementation struct MyStruct { string str; string item; };
Data Structure Lecture-3 Prepared by: Shipra Shukla Assistant Professor Kaziranga University.
25 seconds left…...
Week 1.
Chapter 17 Linked List Saurav Karmakar Spring 2007.
M180: Data Structures & Algorithms in Java
Linked List
The Template Class Chain Chain Linear list. Each element is stored in a node. Nodes are linked together using pointers.
Linked Lists Spring Linked Lists / Slide 2 List Overview * Linked lists n Abstract data type (ADT) * Basic operations of linked lists n Insert,
Copyright © 2011 Pearson Education, Inc. Publishing as Pearson Addison-Wesley Starting Out with C++ Early Objects Seventh Edition by Tony Gaddis, Judy.
A first look an ADTs Solving a problem involves processing data, and an important part of the solution is the careful organization of the data In order.
Chapter 5 – Dynamic Data Structure Part 2: Linked List DATA STRUCTURES & ALGORITHMS Teacher: Nguyen Do Thai Nguyen
1 Linked-list, stack and queue. 2 Outline Abstract Data Type (ADT)‏ Linked list Stack Queue.
Iterator for linked-list traversal, Template & STL COMP171 Fall 2005.
Copyright © 2007 Pearson Education, Inc. Publishing as Pearson Addison-Wesley Slide
Copyright © 2012 Pearson Education, Inc. Chapter 17: Linked Lists.
The List ADT A sequence of zero or more elements A 1, A 2, A 3, … A N-1 N: length of the list A 1 : first element A N-1 : last element A i : position i.
Subject Name : Data Structure Using C Title : Linked Lists
Chapter 17: Linked Lists. Objectives In this chapter, you will: – Learn about linked lists – Learn the basic properties of linked lists – Explore insertion.
Linked List.  Is a series of connected nodes, where each node is a data structure with data and pointer(s) Advantages over array implementation  Can.
1 Linked List. Outline Introduction Insertion Description Deletion Description Basic Node Implementation Conclusion.
Data Structure & Algorithms
Lectures linked lists Chapter 6 of textbook
Lists CS 3358.
Linked Lists.
Linked List.
Computer Science
Linked Lists.
Sequences 08/30/17 08/30/17 Unit III. Linked Lists 1.
Presentation transcript:

DATA STRUCTURE “Linked Lists” SHINTA P STMIK MDP April 2011

Linked Lists / Slide 2 Overview * Linked lists n Abstract data type (ADT) n It consists of a sequence of nodes, each containing arbitrary data fields and one or two references ("links") pointing to the next and/or previous nodes. The principal benefit of a linked list over a conventional array is that the order of the linked items may be different from the order that the data items are stored in memory or on disk, allowing the list of items to be traversed in a different ordernodesfieldsreferencesarray * Basic operations of linked lists n Insert, find, delete, print, etc. * Variations of linked lists n Circularly-linked lists n Linearly-linked lists

Linked Lists / Slide 3 Linked Lists * A linked list is a series of connected nodes * Each node contains at least n A piece of data (any type) n Pointer to the next node in the list * Head: pointer to the first node  The last node points to NULL A  Head BCA datapointer node

Linked Lists / Slide 4 Linked List n A linked list consists of a sequence of elements; each element containing  Arbitrary data fields  one or two references ("links") pointing to the next and/or previous nodes n Advantages  Insertion and deletion can be done in constant time  Save memory in applications with unpredictable size n But, linked lists do not permit random access

Linked Lists / Slide 5 Linked List - variants * Linearly Singly linked list * Linearly Doubly linked lists * Circular linked lists tail

Linked Lists / Slide 6 A Simple Linked List Class  We use two classes: Node and List  Declare Node class for the nodes data : double -type data in this example next : a pointer to the next node in the list class Node { public: doubledata;// data Node*next;// pointer to next };

Linked Lists / Slide 7 Linked List (Cont.) Link berisi alamat dari simpul berikutnya dalam list. Link bernilai 0 bila link tersebut tidak menunjuk ke simpul lainnya. Penunjuk ini disebut penunjuk nol. Linked list juga mengandung variabel penuding list, yang biasanya disebut START yang berisi alamat pertama dari list.

Linked Lists / Slide 8 Linked List (Cont.) START Hal khusus dapat terjadi dimana list tidak mengandung sebuah simpulpun. List seperti ini disebut list hampa. Pada kondisi ini penuding START bernilai 0

Linked Lists / Slide 9 Linked List (Cont.) Eg: A Hospital has 12 bads for treatment, Nine of bads are being used by patients. BedNo. Patient Kirk Dean Maxwell Adams Lane Green Samuels Fields Nelson Next 8 5 START

Linked Lists / Slide 10 A Simple Linked List Class  Declare List, which contains head : a pointer to the first node in the list. Since the list is empty initially, head is set to NULL Operations on List class List { public: List(void) { head = NULL; }// constructor ~List(void);// destructor bool IsEmpty() { return head == NULL; } Node* InsertNode(int index, double x); int FindNode(double x); int DeleteNode(double x); void DisplayList(void); private: Node* head; };

Linked Lists / Slide 11 A Simple Linked List Class  Operations of List IsEmpty : determine whether or not the list is empty InsertNode : insert a new node at a particular position FindNode : find a node with a given value DeleteNode : delete a node with a given value DisplayList : print all the nodes in the list

Linked Lists / Slide 12 Inserting a new node * Node* InsertNode(int index, double x) Insert a node with data equal to x after the index’ th elements. (i.e., when index = 0, insert the node as the first element; when index = 1, insert the node after the first element, and so on) n If the insertion is successful, return the inserted node. Otherwise, return NULL. (If index is length of the list, the insertion will fail.) * Steps 1. Locate index ’th element 2. Allocate memory for the new node 3. Point the new node to its successor 4. Point the new node’s predecessor to the new node newNode index’th element

Linked Lists / Slide 13 Inserting a new node  Possible cases of InsertNode 1. Insert into an empty list 2. Insert in front 3. Insert at back 4. Insert in middle * But, in fact, only need to handle two cases n Insert as the first node (Case 1 and Case 2) n Insert in the middle or at the end of the list (Case 3 and Case 4)

Linked Lists / Slide 14 Inserting a new node Node* List::InsertNode(int index, double x) { if (index < 0) return NULL; int currIndex=1; Node* currNode=head; while (currNode && index > currIndex) { currNode=currNode->next; currIndex++; } if (index > 0 && currNode == NULL) return NULL; Node* newNode=newNode; newNode->data=x; if (index == 0) { newNode->next=head; head=newNode; } else { newNode->next=currNode->next; currNode->next=newNode; } return newNode; } Try to locate index ’th node. If it doesn’t exist, return NULL.

Linked Lists / Slide 15 Inserting a new node Node* List::InsertNode(int index, double x) { if (index < 0) return NULL; int currIndex=1; Node* currNode=head; while (currNode && index > currIndex) { currNode=currNode->next; currIndex++; } if (index > 0 && currNode == NULL) return NULL; Node* newNode=newNode; newNode->data=x; if (index == 0) { newNode->next=head; head=newNode; } else { newNode->next=currNode->next; currNode->next=newNode; } return newNode; } Create a new node

Linked Lists / Slide 16 Inserting a new node Node* List::InsertNode(int index, double x) { if (index < 0) return NULL; int currIndex=1; Node* currNode=head; while (currNode && index > currIndex) { currNode=currNode->next; currIndex++; } if (index > 0 && currNode == NULL) return NULL; Node* newNode=newNode; newNode->data=x; if (index == 0) { newNode->next=head; head=newNode; } else { newNode->next=currNode->next; currNode->next=newNode; } return newNode; } Insert as first element head newNode

Linked Lists / Slide 17 Inserting a new node Node* List::InsertNode(int index, double x) { if (index < 0) return NULL; int currIndex=1; Node* currNode=head; while (currNode && index > currIndex) { currNode=currNode->next; currIndex++; } if (index > 0 && currNode == NULL) return NULL; Node* newNode=newNode; newNode->data=x; if (index == 0) { newNode->next=head; head=newNode; } else { newNode->next=currNode->next; currNode->next=newNode; } return newNode; } Insert after currNode newNode currNode

Linked Lists / Slide 18 Finding a node * int FindNode(double x) Search for a node with the value equal to x in the list. n If such a node is found, return its position. Otherwise, return 0. int List::FindNode(double x) { Node* currNode=head; int currIndex=1; while (currNode && currNode->data != x) { currNode=currNode->next; currIndex++; } if (currNode) return currIndex; return 0; }

Linked Lists / Slide 19 Deleting a node * int DeleteNode(double x) n Delete a node with the value equal to x from the list. n If such a node is found, return its position. Otherwise, return 0. * Steps n Find the desirable node (similar to FindNode ) n Release the memory occupied by the found node n Set the pointer of the predecessor of the found node to the successor of the found node * Like InsertNode, there are two special cases n Delete first node n Delete the node in middle or at the end of the list

Linked Lists / Slide 20 Deleting a node int List::DeleteNode(double x) { Node* prevNode=NULL; Node* currNode=head; int currIndex=1; while (currNode && currNode->data != x) { prevNode=currNode; currNode=currNode->next; currIndex++; } if (currNode) { if (prevNode) { prevNode->next=currNode->next; delete currNode; } else { head=currNode->next; delete currNode; } return currIndex; } return 0; } Try to find the node with its value equal to x

Linked Lists / Slide 21 Deleting a node int List::DeleteNode(double x) { Node* prevNode=NULL; Node* currNode=head; int currIndex=1; while (currNode && currNode->data != x) { prevNode=currNode; currNode=currNode->next; currIndex++; } if (currNode) { if (prevNode) { prevNode->next=currNode->next; delete currNode; } else { head=currNode->next; delete currNode; } return currIndex; } return 0; } currNodeprevNode

Linked Lists / Slide 22 Deleting a node int List::DeleteNode(double x) { Node* prevNode=NULL; Node* currNode=head; int currIndex=1; while (currNode && currNode->data != x) { prevNode=currNode; currNode=currNode->next; currIndex++; } if (currNode) { if (prevNode) { prevNode->next=currNode->next; delete currNode; } else { head=currNode->next; delete currNode; } return currIndex; } return 0; } currNodehead

Linked Lists / Slide 23 Printing all the elements * void DisplayList(void) n Print the data of all the elements n Print the number of the nodes in the list void List::DisplayList() { int num=0; Node* currNode=head; while (currNode != NULL){ cout data << endl; currNode=currNode->next; num++; } cout << "Number of nodes in the list: " << num << endl; }

Linked Lists / Slide 24 Destroying the list * ~List(void) n Use the destructor to release all the memory used by the list. n Step through the list and delete each node one by one. List::~List(void) { Node* currNode = head, *nextNode = NULL; while (currNode != NULL) { nextNode=currNode->next; // destroy the current node delete currNode; currNode=nextNode; }

Linked Lists / Slide 25 Using List int main(void) { List list; list.InsertNode(0, 7.0);// successful list.InsertNode(1, 5.0);// successful list.InsertNode(-1, 5.0);// unsuccessful list.InsertNode(0, 6.0);// successful list.InsertNode(8, 4.0);// unsuccessful // print all the elements list.DisplayList(); if(list.FindNode(5.0) > 0)cout << "5.0 found" << endl; elsecout << "5.0 not found" << endl; if(list.FindNode(4.5) > 0) cout << "4.5 found" << endl; elsecout << "4.5 not found" << endl; list.DeleteNode(7.0); list.DisplayList(); return 0; } Number of nodes in the list: found 4.5 not found 6 5 Number of nodes in the list: 2 result

Linked Lists / Slide 26 Variations of Linked Lists * Circular linked lists n The last node points to the first node of the list n How do we know when we have finished traversing the list? (Tip: check if the pointer of the current node is equal to the head.) A Head BC

Linked Lists / Slide 27 Variations of Linked Lists * Doubly linked lists n Each node points to not only successor but the predecessor There are two NULL: at the first and last nodes in the list n Advantage: given a node, it is easy to visit its predecessor. Convenient to traverse lists backwards A Head B  C 

Linked Lists / Slide 28 Array versus Linked Lists * Linked lists are more complex to code and manage than arrays, but they have some distinct advantages. n Dynamic: a linked list can easily grow and shrink in size.  We don’t need to know how many nodes will be in the list. They are created in memory as needed.  In contrast, the size of a C++ array is fixed at compilation time. n Easy and fast insertions and deletions  To insert or delete an element in an array, we need to copy to temporary variables to make room for new elements or close the gap caused by deleted elements.  With a linked list, no need to move other nodes. Only need to reset some pointers.