Projection of straight line

Slides:



Advertisements
Similar presentations
You have been given a mission and a code. Use the code to complete the mission and you will save the world from obliteration…
Advertisements

PROJECTION OF PLANES.
Part- I {Conic Sections}
PROJECTIONS OF STRAIGHT LINES.
PROJECTIONS OF PLANES In this topic various plane figures are the objects. 1.Inclination of it’s SURFACE with one of the reference planes will be given.
H H D D D ISOMETRIC DRAWING TYPICAL CONDITION. L L H
Fill in missing numbers or operations
$1 Million $500,000 $250,000 $125,000 $64,000 $32,000 $16,000 $8,000 $4,000 $2,000 $1,000 $500 $300 $200 $100 Welcome.
/4/2010 Box and Whisker Plots Objective: Learn how to read and draw box and whisker plots Starter: Order these numbers.
Jeopardy Q 1 Q 6 Q 11 Q 16 Q 21 Q 2 Q 7 Q 12 Q 17 Q 22 Q 3 Q 8 Q 13
Jeopardy Q 1 Q 6 Q 11 Q 16 Q 21 Q 2 Q 7 Q 12 Q 17 Q 22 Q 3 Q 8 Q 13
1 1  1 =.
1  1 =.
MULTIPLYING MONOMIALS TIMES POLYNOMIALS (DISTRIBUTIVE PROPERTY)
FACTORING Think Distributive property backwards Work down, Show all steps ax + ay = a(x + y)
FACTORING ax2 + bx + c Think “unfoil” Work down, Show all steps.
Addition Facts
Around the World AdditionSubtraction MultiplicationDivision AdditionSubtraction MultiplicationDivision.
£1 Million £500,000 £250,000 £125,000 £64,000 £32,000 £16,000 £8,000 £4,000 £2,000 £1,000 £500 £300 £200 £100 Welcome.
TOPICS OF “ENGINEERING GRAPHICS” (Mechanical Portion)
Part- I {Conic Sections}
PROJECTIONS OF SOLIDS.
EXERCISES: PROJECTIONS OF STRAIGHT LINES
( A Graphical Representation)
Effects on UK of Eustatic sea Level rise GIS is used to evaluate flood risk. Insurance companies use GIS models to assess likely impact and consequently.
PROJECTIONS OF STRAIGHT LINES.
Factor P 16 8(8-5ab) 4(d² + 4) 3rs(2r – s) 15cd(1 + 2cd) 8(4a² + 3b²)
Building Blocks 1 SG MATHEMATICS Credit. Qu. 1 If we write the number ABC DE in the form what is the value of n.
Adding Up In Chunks.
Lets play bingo!!. Calculate: MEAN Calculate: MEDIAN
Before Between After.
Addition 1’s to 20.
25 seconds left…...
Subtraction: Adding UP
Ratio Unit – Part I  a) c)  b)d) 3: words 60 words per minute 180:3.
Week 1.
Number bonds to 10,
1 PROBLEM 1 PROBLEM 3 PROBLEM 2 PROBLEM 4 PROBLEM 5 PROBLEM 8PROBLEM 7 PROBLEM 6 STANDARD 13 SUPPLEMENT AND COMPLEMENT: NUMERIC PROBLEM 10PROBLEM 9 PRESENTATION.
© 2006, François Brouard Case Real Group François Brouard, DBA, CA January 6, 2006.
PROJECTIONS OF PLANES 1.POSSIBLE POSITIONS A.With Respect to H.P. Parallel to the H.P. Perpendicular to the H.P. Inclined to the H.P. B.With Respect to.
TO DRAW PROJECTIONS OF ANY OBJECT, ONE MUST HAVE FOLLOWING INFORMATION A) OBJECT { WITH IT’S DESCRIPTION, WELL DEFINED.} B) OBSERVER { ALWAYS OBSERVING.
PROJECTIONS OF STRAIGHT LINES Part II Prof.T.JEYAPOOVAN Department of Mechanical Engineering Hindustan Institute of Technology and Science Chennai ,
SIMPLE CASES OF THE LINE 1.A VERTICAL LINE ( PERPENDICULAR TO HP & // TO VP) 2.LINE PARALLEL TO BOTH HP & VP. 3.LINE INCLINED TO HP & PARALLEL TO VP. 4.LINE.
Engineering Graphics Anna Edusat course on “Engineering Graphics ” Lecture – 4 Projections of Lines Dr. Vela Murali,Ph.D., Head and Professor i/c - Engineering.
Projection of Planes Plane figures or surfaces have only two dimensions, viz. length & breadth. They do not have thickness. A plane figure, extended if.
Projections of Straight Lines Engineering Graphics TA 101.
PROJECTIONS OF POINTS & LINES Part I
Projections of Line. 2 NOTATIONS FOLLOWING NOTATIONS SHOULD BE FOLLOWED WHILE NAMEING DIFFERENT VIEWS IN ORTHOGRAPHIC PROJECTIONS. IT’S FRONT VIEW a’
Projection of point and line
ORTHOGRAPHIC PROJECTIONS
PROF.V.V.SHINDE NDMVP'S KBTCOE NASHIK
SOLID GEOMETRY.
Orientation of Point in Space
Projection of straight line
ORTHOGRAPHIC PROJECTIONS
PROBLEMS INVOLVING TRACES OF THE LINE.
ALL THE BEST !! APPLICATIONS OF PRINCIPLES OF PROJECTIONS OF LINES
ORTHOGRAPHIC PROJECTIONS
Projection of straight line
SECTIONS OF SOLIDS Part I
TRUE LENGTH (T.L.) AND TRUE INCLINATION (T.I.)
Projection of straight line
ORTHOGRAPHIC PROJECTIONS
PROBLEMS INVOLVING TRACES OF THE LINE.
PROJECTION Any object has three dimensions, ie its length, width and thickness. A projection is defined as the representation of an object on a two dimension.
ALL THE BEST !! APPLICATIONS OF PRINCIPLES OF PROJECTIONS OF LINES
Projection of straight line
Engineering Graphics I Unit-1 Projections of a Point & Line
Presentation transcript:

Projection of straight line Line inclined to both HP & VP Type-I Given projections (FV & TV) of the line. To find True length & true inclination of the line with HP (θ) and with VP(Φ). PROBLEM End A of a line AB is 15mm above HP & 20mm in front of VP while its end B is 50mm above HP and 75mm in front of VP. The distance between end projectors of the line is 50mm. Draw projections of the line and find its true length and true inclination with the principal planes. Also mark its traces.

θ: True inclination of the line with HP = 24º b1’ b’ θ: True inclination of the line with HP = 24º TL 50 a’ b2’ α : Inclination of FV of the line with HP/XY α θ HT 15 VT’ X Y v h’ 50 Ø: True inclination of the line with VP = 41º 20 Φ β b1 a β : Inclination of TV of the line with VP/XY 75 TL b2 b

Line inclined to both HP & VP Type –II Given (i) T.L., θ and Ø, (ii) T.L., F.V., T.V. to draw projections, find α, β,H.T. and V.T. PROBLEM A line AB, 70mm long, has its end A 15mm above HP and 20mm in front of VP. It is inclined at 30° to HP and 45°to VP. Draw its projections and mark its traces.

b’ b1’ 70 a’ 30° b2’ HT 15 VT’ Y X h’ v 20 b1 a 45° 70 b2 b

Q10.11 The top view of a 75mm long line AB measures 65mm,while its front view measures 50mm. Its one end A is in HP and12mm in front of VP. Draw the projections of AB and determine its inclination with HP and VP To draw FV &TV of the line AB To find θ & Ø Given, TL=75mm,TV=65mm,FV=50mm A is in HP & 12mm→VP Hint: Draw ab1=65mm // to XY. Because when TV is // to XY, FV gives TL. b’ b1’ Ans. θ=31º 50 75 Ans. Ø=49º a’ X Y 31º 12 65 b1 a 49º 75 65 b b2

Q10. 12 A line AB, 65mm long has its end A 20mm above H. P Q10.12 A line AB, 65mm long has its end A 20mm above H.P. and 25mm in front of VP. The end B is 40mm above H.P. and 65mm in front of V.P. Draw the projections of AB and show its inclination with H.P. and V.P. Given, TL=65mm A is 20mm ↑ HP & 25mm →V.P. B is 40mm ↑ & 65mm → V.P. To draw FV &TV of the line AB To find θ & Ø Hint1:Mark a’ 20mm above H.P & a 25mm below XY b’ b1’ Hint2:Draw locus of b’ 40mm above XY & locus of b 65 mm below XY a’ 65 b2’ 40 18º 20 X Y 25 Ans. θ=18º 38º b1 a 65 Ans. Ø=38º 65 b b2

Q10. 13:The projectors of the ends of a line AB are 5cm apart Q10.13:The projectors of the ends of a line AB are 5cm apart. The end A is 2cm above the H.P and 3cm in front of V.P. The end B is1cm below H.P. and 4cm behind the V.P. Determine the true length and traces of AB, and its inclination with the two planes Given, A0B0=50mm A is 20mm ↑ HP & 30mm →V.P. B is 10mm ↓ & 40mm ← V.P. To find, True Length, θ,Ø, H.T. and V.T. b b2 a’ 40 HT b2’ 20 VT’ 91 X v Y 50 h’ 10 30 20º b’ Ans. θ=20º a 50º b1 Ans. Ø=50º

Q10. 14:A line AB, 90mm long, is inclined at 45 to the H. P Q10.14:A line AB, 90mm long, is inclined at 45 to the H.P. and its top view makes an angle of 60 with the V.P. The end A is in the H.P. and 12mm in front of V.P. Draw its front view and find its true inclination with the V.P. b’ Given, T.L.=90mm, θ=45º, β=60º A is in the H.P. & 12mm→V.P. b1’ To find/draw, F.V.,T.V. & Ø 90 Ans. Ø = 38º a’ X Y 45º 12 b1 60º 38º a 90 b2 b

Q10. 16:The end A of a line AB is 25 mm behind the V. P Q10.16:The end A of a line AB is 25 mm behind the V.P. and is below the H.P. The end B is 12 mm in front of the VP and is above the HP The distance between the projectors is 65mm. The line is inclined at 40 to the HP and its HT is 20 mm behind the VP. Draw the projections of the line and determine its true length and the VT Given, A0B0=65mm A is 25mm ←V.P.& is ↓H.P. B is 12mm →V.P. & is above HP θ = 40º To find/draw, F.V., T.V., T.L., VT’ b’ b1’ b2’ VT’ a b1 25 HT b2 20 X h’ Y 40º v 12 a’ b 65

10. 17:A line AB, 90mm long, is inclined at 30 to the HP 10.17:A line AB, 90mm long, is inclined at 30 to the HP. Its end A is 12mm above the HP and 20mm in front of the VP. Its FV measures 65mm. Draw the TV of AB and determine its inclination with the VP b’ b1’ 90 65 a’ 12 30° X Y 20 b1 44° a Ans: Ø = 44º 90 b b2

Q10.23:Two lines AB & AC make an angle of 120 between them in their FV & TV. AB is parallel to both the HP & VP. Determine the real angle between AB & AC. C c1’ c2’ c’ 112° Ans. 112º a’ b’ 120° X Y a b c2 c1 120° c

Q8:A line AB 65 mm long has its end A in the H. P Q8:A line AB 65 mm long has its end A in the H.P. & 15 mm infront of the V.P.The end B is in the third quadrant. The line is inclined at 30 to the H.P. and at 60 to the V.P. Draw its projections.

Q10. 19 A line AB, inclined at 40º to the V. P Q10.19 A line AB, inclined at 40º to the V.P. has its end 50mm and 20mm above the H.P. the length of its front view is 65mm and its V.T. is 10mm above the H.P. determine .the true length of AB its inclination with the H.P. and its H.T. Given, Ø = 40º, A is 20mm↑HP, B is 50 mm ↑ HP, FV=65mm, VT is 10mm ↑ HP To find, TL, θ & HT b1’ b’ 85 50 a’ b2’ 21º HT VT’ 20 10 X Y v 40º h’ b1 Ans, TL = 85 mm, θ = 21º & HT is 17 mm behind VP a b2 b

Q6. The top view of a 75mm long line CD measures 50 mm Q6. The top view of a 75mm long line CD measures 50 mm. C is 50 mm in front of the VP & 15mm below the HP. D is 15 mm in front of the VP & is above the HP. Draw the FV of CD & find its inclinations with the HP and the VP. Show also its traces. Given, TL = 75 mm, FV =50 mm, C is 15mm ↓ HP & 50 mm → VP, D is 15 mm → VP To draw, FV & to find θ & Ø d1’ d’ Hint 1: Cut anarc of 50 mm from c on locus of D Hint 2: Make TV (cd), // to XY so that FV will give TL 75 X Y 15 d2 Ans: Ø=48º d 50 c’ Locus of D Ø=48º Ans: θ=28º 50 θ=28º d1 c

Q10. 10 A line PQ 100 mm long is inclined at 30º to the H. P Q10.10 A line PQ 100 mm long is inclined at 30º to the H.P. and at 45º to the V.P. Its mid point is in the V.P. and 20 mm above the H.P. Draw its projections, if its end P is in the third quadrant and Q is in the first quadrant. Given, TL = 100, θ = 30º, Mid point M is 20mm↑HP & in the VP End P in third quadrant & End Q in first quadrant To draw, FV & TV q’ q1’ p2 p 50 p2’ m’ q2’ 50 30º 50 20 p1 X Y m p1’ p’ q2 50 q q2