CZUŁOŚĆ SPEKTROSKOPII MÖSSBAUEROWSKIEJ NA PRZEJŚCIE DO NADPRZEWODNICTWA W Ba 0.6 K 0.4 Fe 2 As 2 1 Zakład Spektroskopii Mössbauerowskiej, Instytut Fizyki,

Slides:



Advertisements
Similar presentations
Bonds.
Advertisements

Relativistic Effects in Gold Chemistry Jan Stanek Jagiellonian University Marian Smoluchowski Institute of Physics Krakow, Poland.
investigated by means of the Mössbauer Spectroscopy
Site occupancies in the R 2-x Fe 14+2x Si 3 (R = Ce, Nd, Gd, Dy, Ho, Er, Lu, Y) compounds studied by Mössbauer spectroscopy A. Błachowski 1, K. Ruebenbauer.
Magnetism of the ‘11’ iron-based superconductors parent compound Fe1+xTe: The Mössbauer study A. Błachowski1, K. Ruebenbauer1, P. Zajdel2, E.E. Rodriguez3,
Rare-earth-iron nanocrystalline magnets E.Burzo 1), C.Djega 2) 1) Faculty of Physics, Babes-Bolyai University, Cluj-Napoca 2) Universite Paris XII, France.
Creating new states of matter:
Magnetic-field-induced charge-stripe order in the high-temperature superconductor YBa2Cu3Oy Tao Wu et. al. Nature 477, 191 (2011). Kitaoka Lab. Takuya.
A. Błachowski1, K. Ruebenbauer1, J. Żukrowski2, and Z. Bukowski3
Mitglied der Helmholtz-Gemeinschaft Giorgi Khazaradze Tbilisi, July10, 2014 Study of hexaferrite Ba 0.6 Sr 1.4 Zn 2 Fe 12 O 22 by EPR technique.
First-principles calculations with perturbed angular correlation experiments in MnAs and BaMnO 3 Workshop, November Experiment: IS390.
Observation of a possible Fulde-Ferrell-Larkin-Ovchinnikov (FFLO) state in CeCoIn 5 Roman Movshovich Andrea Bianchi Los Alamos National Laboratory, MST-10.
ELECTROCHEMICAL IMPEDANCE SPECTROSCOPY (EIS): A TOOL FOR THE CHARACTERIZATION OF SPUTTERED NIOBIUM FILMS M. Musiani Istituto per l’Energetica e le Interfasi,
Kitaoka lab. Takayoshi SHIOTA M1 colloquium N. Fujiwara et al., Phys. Rev. Lett. 111, (2013) K. Suzuki et al., Phys. Rev. Lett. 113, (2014)
Photons muons neutrons Tuning the static spin-stripe phase and superconductivity in La 2-x Ba x CuO 4 (x = 1/8) by hydrostatic pressure Zurab Guguchia.
Some interesting physics in transition metal oxides: charge ordering, orbital ordering and spin-charge separation C. D. Hu Department of physics National.
Oda Migaku STM/STS studies on the inhomogeneous PG, electronic charge order and effective SC gap of high-T c cuprate Bi 2 Sr 2 CaCu 2 O 8+  NDSN2009 Nagoya.
Doping and Disorder in the Oxygenated, Electron-doped High-temperature Superconductor Pr 2-x Ce x CuO 4±  The building blocks of the high-temperature.
P461 - Semiconductors1 Superconductivity Resistance goes to 0 below a critical temperature T c element T c resistivity (T=300) Ag mOhms/m Cu
Wendy Xu 286G 5/28/10.  Electrical resistivity goes to zero  Meissner effect: magnetic field is excluded from superconductor below critical temperature.
Rinat Ofer Supervisor: Amit Keren. Outline Motivation. Magnetic resonance for spin 3/2 nuclei. The YBCO compound. Three experimental methods and their.
HARMONICALLY MODULATED STRUCTURES S. M. Dubiel * Faculty of Physics and Computer Science, AGH University of Science and Technology, PL Krakow, Poland.
H. C. Ku Department of Physics, National Tsing Hua University, Hsinchu, Taiwan 300, R.O.C. with: B. N. Lin, P. C. Guan, Y. C. Lin, T. Y. Chiu, M. F. Tai.
Semiconductors n D*n If T>0
Electron Spin Resonance Spectroscopy
Corey Thompson Technique Presentation 03/21/2011
Physical Chemistry 2 nd Edition Thomas Engel, Philip Reid Chapter 28 Nuclear Magnetic Resonance Spectroscopy.
Mössbauer study of iron-based superconductors A. Błachowski 1, K. Ruebenbauer 1, J. Żukrowski 2 1 Mössbauer Spectroscopy Division, Institute of Physics,
Mössbauer spectroscopy References: J.P. Adloff, R. Guillaumont: Fundamentals of Radiochemistry, CRC Press, Boca Raton, 1993.
Investigating the mechanism of High Temperature Superconductivity by Oxygen Isotope Substitution Eran Amit Amit Keren Technion- Israel Institute of Technology.
Impurity effect on charge and spin density on the Fe nucleus in BCC iron A. Błachowski 1, U.D. Wdowik 2, K. Ruebenbauer 1 1 Mössbauer Spectroscopy Division,
MgB2 Since 1973 the limiting transition temperature in conventional alloys and metals was 23K, first set by Nb3Ge, and then equaled by an Y-Pd-B-C compound.
The University of Tennessee Resonant Ultrasound Spectroscopy at The University of Tennessee Veerle Keppens Department of Materials Science and Engineering.
Superconducting FeSe studied by Mössbauer spectroscopy and magnetic measurements A. Błachowski 1, K. Ruebenbauer 1, J. Żukrowski 2, J. Przewoźnik 2, K.
Pengcheng Dai The University of Tennessee (UT) Institute of Physics, Chinese Academy of Sciences (IOP) Evolution of spin excitations.
A study of Fe – substituted (La 0.8 Sr 0.2 ) 0.95 MnO 3-y as cathode material for solid oxide fuel cells B. N. Wani, Mrinal Pai, S.J. Patwe, S. Varma,
Piezoelectric Spectroscopy of the Defects States on the Surfaces of Semiconducting Samples M. Maliński 1, J. Zakrzewski 2, K. Strzałkowski 2, F. Firszt.
Photoacoustic Spectroscopy of Surface Defects States of Semiconductor Samples 1) M.Maliński, 2) J.Zakrzewski, 2) F.Firszt 1) Department of Electronics.
Quantum criticality –The physics of quantum critical phase transitions connects to some of the most challenging and technologically relevant problems in.
Fe As Nodal superconducting gap structure in superconductor BaFe 2 (As 0.7 P 0.3 ) 2 M-colloquium5 th October, 2011 Dulguun Tsendsuren Kitaoka Lab. Division.
An Introduction to Fe-based superconductors
Giorgi Ghambashidze Institute of Condensed Matter Physics, Tbilisi State University, GE-0128 Tbilisi, Georgia Muon Spin Rotation Studies of the Pressure.
Mössbauer spectroscopy of iron-based superconductors A. Błachowski 1, K. Ruebenbauer 1, J. Żukrowski 2, J. Przewoźnik 2 11-family cooperation K. Wojciechowski.
Ch. Urban 1, S. Janson 1, U. Ponkratz 1,2, O. Kasdorf 1, K. Rupprecht 1, G. Wortmann 1, T. Berthier 3, W. Paulus 3 1 Universität Paderborn, Department.
Monitoring of the Yellow Hypergiant Rho Cas: Results of the High-Resolution Spectroscopy During V.G. Klochkova (SAO RAS, Nizhnij Arkhyz, Russia)
Fe As A = Ca, Sr, Ba Superconductivity in system AFe 2 (As 1-x P x ) 2 Dulguun Tsendsuren Kitaoka Lab. Division of Frontier Materials Sc. Department of.
hyperfine interactions (and how to do it in WIEN2k)
Synthesis and Properties of Magnetic Ceramic Nanoparticles Monica Sorescu, Duquesne University, DMR Outcome Researchers in Duquesne University.
From Local Moment to Mixed-Valence Regime in Ce 1−x Yb x CoIn 5 alloys Carmen Almasan, Kent State University, DMR Ce 1−x Yb x CoIn 5 alloys have.
Superconducting FeSe studied by Mössbauer spectroscopy and magnetic measurements A. Błachowski 1, K. Ruebenbauer 1, J. Żukrowski 2, J. Przewoźnik 2, K.
Periodic Table Li 3 He 2 C6C6 N7N7 O8O8 F9F9 Ne 10 Na 11 B5B5 Be 4 H1H1 Al 13 Si 14 P 15 S 16 Cl 17 Ar 18 K 19 Ca 20 Sc 21 Ti 22 V 23 Cr.
High pressure study on superconductor K x Fe 2-y Se 2 M1 Hidenori Fujita Shimizu group.
A new type Iron-based superconductor ~K 0.8 Fe 2-y Se 2 ~ Kitaoka lab Keisuke Yamamoto D.A.Torchetti et al, PHYSICAL REVIEW B 83, (2011) W.Bao et.
Superconductivity and magnetism in iron-based superconductor
Antiferromagnetic Resonances and Lattice & Electronic Anisotropy Effects in Detwinned La 2-x Sr x CuO 4 Crystals Crystals: Yoichi Ando & Seiki Komyia Adrian.
Magnetism of the regular and excess iron in Fe1+xTe
Rotational and Hyperfine Analyses of the Band of 17 O- Containing Isotopologues of Oxygen Measured by CRDS at Room and Liquid Nitrogen Temperatures Olga.
Pengcheng Dai The University of Tennessee (UT) Institute of Physics, Chinese Academy of Sciences (IOP) Evolution of spin excitations.
MÖSSBAUER SPECTROSCOPY OF IRON-BASED SUPERCONDUCTOR FeSe
MÖSSBAUER STUDY OF NON-ARSENIC IRON-BASED SUPERCONDUCTORS AND THEIR PARENT COMPOUNDS K. Komędera 1, A. K. Jasek 1, A. Błachowski 1, K. Ruebenbauer 1, J.
Jun Hee Cho1, Sang Gil Ko1, Yang kyu Ahn1, Eun Jung Choi2
Mossbauer spectroscopy
University of Ioannina
Unit 3.3: Covalent Bonds and Intermolecular Forces
Electric quadrupole interaction in cubic BCC α-Fe
Anisotropic superconducting properties
151Eu AND 57Fe MÖSSBAUER STUDY OF Eu1-xCaxFe2As2
Fig. 2: Gap symmetry: Comparison with Ce doping
Mössbauer study of BaFe2(As1-xPx)2 iron-based superconductors
Mössbauer study of BaFe2(As1-xPx)2 iron-based superconductors
Presentation transcript:

CZUŁOŚĆ SPEKTROSKOPII MÖSSBAUEROWSKIEJ NA PRZEJŚCIE DO NADPRZEWODNICTWA W Ba 0.6 K 0.4 Fe 2 As 2 1 Zakład Spektroskopii Mössbauerowskiej, Instytut Fizyki, Uniwersytet Pedagogiczny, Kraków, Polska 2 Instytut Niskich Temperatur i Badań Strukturalnych, Polska Akademia Nauk, Wrocław, Polska 3 Cavendish Laboratory, University of Cambrige, United Kingdom 4 School of Chemical and Physical Sciences, Victoria University, Wellington, New Zealand 5 Laboratory of Solid State Physics, ETH Zurich, Switzerland 6 Institute of Condensed Matter Physics, EPFL, Lausanne, Switzerland A. K. Jasek 1, K. Komędera 1, A. Błachowski 1, K. Ruebenbauer 1, Z. Bukowski 2, J. G. Storey 3,4, J. Karpinski 5, X Ogólnopolskie Seminarium Spektroskopii Mössbauerowskiej OSSM’2014 Wrocław, czerwca 2014

T sc max = 56 K 47 K 18 K 15 K Iron-based superconductor families LnO(F)FeAs AFe 2 As 2 AFeAs FeTe(Se,S) Ln = La, Ce, Pr, Nd, Sm, Gd … A = Ca, Sr, Ba, Eu, K A = Li, Na The aim of the experiment was to check whether the M ӧ ssbauer spectroscopy is sensitive to the superconducting transition in Ba 0.6 K 0.4 Fe 2 As 2.

Ba 1-x K x Fe 2 As 2 parent compound BaFe 2 As 2 doping K superconductivity T sc =38K Tetragonal unit cell of BaFe 2 As 2 and phase diagram of Ba 1-x K x Fe 2 As 2

Fig. 3. Lattice parameters of the series Ba 1-x K x Fe 2 As 2 (x = 0–0.3) Fig. 2. Resistivity of Ba 1-x K x Fe 2 As 2 (x = ) Fig. 1. Resistivity of Ba 0.6 K 0.4 Fe 2 As 2 plotted vs. temperature

BaFe 2 As 2 vs. Ba 0.6 K 0.4 Fe 2 As 2 Figs. 1,2. 57 Fe Mössbauer spectra versus temperature for the parent compound BaFe 2 As 2 and the Ba 0.6 K 0.4 Fe 2 As 2 Fig. 3. The difference in total molar specific heat coefficients between superconductor (s) and parent compound (p) versus temperature γ tot =C tot /T C tot - the total molar heat capacity The inset shows the electronic specific heat coefficient of the superconductor versus temperature C el - the electronic molar heat capacity

Ba 0.6 K 0.4 Fe 2 As 2 T sc = 38 K Selected Mössbauer spectra of the Ba 0.6 K 0.4 Fe 2 As 2 across the transition to the superconducting state. Note the abrupt changes in the regions 40 K - 38 K and 28 K - 24 K A. K. Jasek et al., J. Alloys Comp. 609, 150 (2014)

P arameters derived from the Mössbauer spectra of Ba 0.6 K 0.4 Fe 2 As 2 plotted versus temperature. S – total spectrum shift versus room temperature α-Fe Δ 0 – constant component of the quadrupole splitting Γ – absorber line width t A – dimensionless absorber resonant thickness Ratio of the recoilless fractions f/f 0 and dispersion of CDW Δρ versus temperature

Electric field gradient wave (EFGW) in Ba 0.6 K 0.4 Fe 2 As 2 Shape of EFGW A - amplitude of EFGW β - shape parameter of EFGW  - quadrupole coupling constant

Conclusions CDW and modulation of the EFG on the iron nuclei develop within this system. The new type of hyperfine interaction modulation called electric field gradient wave (EFGW) is seen on the iron nuclei. The charge modulation is sensitive to the transition between normal and superconducting state. CDW and EFGW strongly vary at the superconducting gap opening. A distribution of the “covalent” electrons is strongly perturbed by the itinerant electrons forming Cooper pairs. Dynamic properties of the iron nuclei seem unaffected by a transition to the superconducting state.

Thank You for Your attention