Understanding Micrologic

Slides:



Advertisements
Similar presentations
FIGURE 7.1 Elements of the final control operation.
Advertisements

As a stand-alone overview of test tools.
FIGURE 2.1 The purpose of linearization is to provide an output that varies linearly with some variable even if the sensor output does not. Curtis.
SWITCH-MODE POWER SUPPLIES AND SYSTEMS Silesian University of Technology Faculty of Automatic Control, Electronics and Computer Sciences Ryszard Siurek.
Variable Frequency Drives Bypass Options
Sequential Process Control
DS|POWER DS300 series New generation DSP controlled Uninterruptible power supplies.
CL100D series DSP controlled Uninterruptible power supplies.
SITOP select Automation and Drives SITOP select Electronic Diagnosis Module Fault diagnosis – rapid and reliable.
High Frequency Distortion in Power Grids due to Electronic Equipment Anders Larsson Luleå University of Technology.
Electrical Installation
© ABB STOTZ KONTAKT ABB MCB Tripping – Characteristics MCB´s Knowhow ABB STOTZ KONTAKT.
Copyright© Voltimum Experts – not to be reproduced without prior consent of Voltimum UK Voltimum Expert Topic – Power Harmonics.
1S25 Arc Fault Monitor. 1S25 Arc Fault Monitor 1S25 Arc Fault Monitor Electrical arc short circuits in metal clad switchgear may occur for many different.
1. Four LLs were published in February Transmission Relaying – Undesired Blocking 2.Lack of Separation for Critical Control Power Supply Leads.
1 POWER QUALITY -- Bhanu Bhushan -- June, How close is the supply voltage waveform to sinusoidal, and how close are the supply voltage and frequency.
Mike Thornton National Sales Manager
Practical Considerations for Digital Design
Chapter 11 Practical Considerations for Digital Design William Kleitz Digital Electronics with VHDL, Quartus® II Version Copyright ©2006 by Pearson Education,
Model H Free Standing Static Transfer Switch. Why choose a model H static transfer switch? Increases power availability. True solid state. Rugged, reliable.
Model W Wall Mount Static Transfer Switch. Why choose a model W static transfer switch? Increases power availability. Integrated maintenance bypass. True.
Submitted by: Name:Rajendra Kumar Choudhury Branch:Electrical Engg.
Earthing systems, Harmonics Currents and GFP
Co-ordination of LV Protection Devices
Earthing systems, Harmonics Currents and GFP
QUALITY AND TECHNOLOGY
Siemens Building Technologies Building Technologies Variable Frequency Drives Harmonics Overview.
Troubleshooting Training Course.  Visual and General Test  Perform System Test (Mode  Perform System Test)  Identify The Error  If you need Technical.
Fuses vs Circuit Breakers for Low Voltage Applications
MOLDED CASE CIRCUIT BREAKER BASICS
© ABB Ltd - ATLV /26/2015 Insert image here Fuses vs Fuseless Technology.
GENERATOR PROTECTION.
Graphic Symbol Location 1. DIN Terminal X52 The machine is powered by electricity using copper cable with 5 wires (3 phase wires + neutral wire +
FP5000 Refer to for the latest information on this constantly evolving productwww.eatonelectrical.com.
SYMAP-BC SYMAP-BC.
GST FIRE ALARM SYSTEM INTERNATIONAL BUSINESS DEPARTMENT , GST BEIJING
Dry type transformers Zaragoza Traction application
Slide 1 / 35 P&T - GPS - Training PhB - 01_TECH_TeSys_U_controller_ en 06/2004 Presentation of the range Composition of the controller  Control base 
Generator Protection. Amount of Protection Rated power of the generator Ratio of its capacity to the total capacity of the system Configuration of the.
Chapter 7 SYSTEM PROTECTION
/1 Testing Harmonics and Flicker /1 Harmonics & Flicker Two different test standards: EN & EN EN controls.
Power Distribution Harmonics Case Study of 285-3F Chiller Plant Michael W. Harmon Principle Engineer Savannah River Nuclear Solutions, LLC Savannah River.
Looking for a more powerful circuit monitor?
Electrical Installation Practice 2
SFT 2841 IN CONNECTED MODE Prepare setting files.
Electrical Distribution Training
Electrical Distribution Training
Voltimum Expert Topic – Power Harmonics. What are Harmonics? They are waveforms with frequencies that are multiples of the fundamental frequency (Typically.
Protection & Switchgear
A common 400 Hz AC Power Supply Distribution System for CMS FEE. Authors C. Rivetta– Fermilab. F. Arteche, F. Szoncso, - CERN.
Main contacts closed – RED Colour with ON
Electrical Testers Basic test equipment used in today’s shops may include an analog type meter, a VAT (Volt-Amp-Tester), DMM (Digital Multimeter),
Presentation Topic: Circuit Breakers Represented to: Dr. M. Riaz Khan Represented by: M. Mujahid.
Chapter 3 PHYSICAL INJURY AND CONTROLS 3.2 Electrical Safety
Power Quality Issues Power Electronics Group.
PROTECTION AGAINST INDIRECT CONTACT
Effects of Harmonics on Capacitors Electrical System
HARMONIC MITIGATION USING PASSIVE FILTERS
GROUND-FAULT GROUND-CHECK MONITOR
FEEDER PROTECTION UNIT
Grid feeding monitoring relay
Chapter 7 System Protection
Protection Philosophy
ELECTRICAL POWER-II Electrical engineering sixth semester
Agenda Introduction of Protective Relays
Earth Leakage Protection
Presentation transcript:

Understanding Micrologic 1

Contents Range Protection against overloads Protection against short-circuits Protection against insulation faults Hardware Metering Others functions Monitoring and/or protection of loads Load shedding and reconnection Programmable controller Harmonic Asic and microprocessor self-protection 2

Current protection type Micrologic Range Micrologic 6. 0 P Measurement type version Current protection type Without Measurement type A P H Current protection type 5.0 H 6.0 H 7.0 H 2 : Distribution L, I 5 : Selective L, S, I 6: Selective and ground fault L, S, I, G 7 : Selective and earth leakage L, S, I, V 2.0 2.0 A 5.0 A 6.0 A 7.0 A 5.0 P 6.0 P 7.0 P 5.0 Return to contents

Protection against overloads phases LT setting Long-time protection (i²t) of the phases and the neutral Protect against premature ageing of cables Adjustable setting range using rating plugs standard : 0.4 - 1, low : 0.4 - 0.8, High : 0.8 - 1, plug OFF Setting to within one Amp with keypad or via Communication Micrologic pour protéger les conducteurs et les équipements contre les surintensités Protection contre les surcharges Protection Long Retard des phases La protection contre les surcharges est assurée par la courbe Long Retard “L”. La plage de réglage, assurée par un plug fourni en standard, est comprise entre 0,4 In et In. Réglage fin par changement de plug : En fonction des besoins, le seuil de déclenchement peut être affiné grâce à une gamme de plug long retard. Ce dernier remplace par simple vissage sur la face avant du déclencheur, le plug standard. Plug bas : 0,4 – 0.8 Plug haut : 0,8 – 1 Un plug OFF permet d’inhiber la protection Long Retard et ainsi de ne conserver que la protection court-circuit (ex : la protection moteur). Réglage fin par clavier ou par supervision avec l’option de communication. Avec les Micrologic P et H, l’exploitant a la possibilité d’effectuer le réglage des seuils à l’ampère près en dessous des seuils des commutateurs avec comme limite inférieure le cran le plus bas (0,4) Toutes les protections Long Retard sont réglables en temporisation afin de permettre une meilleure sélectivité avec des disjoncteurs placés en aval. La temporisation à 6Ir varie entre 0,5s et 24s Protection Long Retard du neutre Dans le cas d’un réseau triphasé avec neutre distribué, la protection long retard du neutre est à l’initiative de l’exploitant. Deux cas, selon le type d’appareil utilisé, sont à envisager : Disjoncteurs tripolaires Le tableau ci-dessous récapitule les possibilités de réglages. Micrologic Type de mesure - A P H Neutre OFF Pas de TC extérieur Neutre ½ non non Oui par clavier ou supervision Neutre plein oui oui oui Oui Neutre double non non Oui par clavier ou supervision Le TC extérieur est relié à Micrologic par le bornier fils fins …/... é 8 Protection against risk of fire

Protection against overloads neutral conductor Neutral protection Adjustment : by three position dial on the 4th pole : 4P 3D, 3D+N/2, 4P 4D by keypad : OFF, 1/2, Full, 1.6 (3 pole breaker only) Settings : N/2 : IrN = 1/2 IrP, IsdN = 1/2 IsdP, IiN = IiP, IgN = IgP 1.6N : IrN = 1.6 IrP, IsdN = 1.6 IsdP, IiN = IiP, IgN = IgP Oversized neutral protection protection against 3rd-order harmonics summed up in the neutral conductor 3Pole breaker only

Protection against overloads 3rd harmonic in neutral conductor

Protection against overloads IDMTL Long-time protection of the phases IDMTL type (Inverse definite minimum time lag) High voltage fuse Extremely inverse time Very inverse time Standard inverse time Definite time Improvement of discrimination with HV fuses Better protection of switchgears Return to contents

Protection against short-circuits Short-time protection For low impedance short-circuits (80% of faults) I²t ON to improve discrimination with downstream protection, inverse time protection up to 10Ir Instantaneous protection For solid short-circuits N1 and H1 breaker : OFF position inhibits the instantaneous protection H2, H3 and L1 breaker : OFF postion = DIN value (shown on screen) RMS measurement with 20ms fixed time delay ST pick-up ST delay Inst. pick-up Protection contre les courts-circuits Les courts-circuits sont de deux natures en fonction de leur emplacement : les courts-circuits impédants, d’une valeur faible s’ils surviennent en bout de ligne, les courts-circuits francs, de valeur élevée s’ils se produisent sur les jeux de barres d’un TGBT. Les disjoncteurs de puissance sont construits pour supporter pendant plusieurs centaines de milli-secondes, l’énergie du court-circuit. Leur déclenchement peut être temporisé et permettre d’assurer la sélectivité avec des appareils placés en aval. Protection Court-Retard A l’exception des Micrologic 2.0 et 2.0A, toutes les unités de contrôle Micrologic sont de type sélectif. Elles possèdent une protection Court-Retard “S” dont la plage de réglage est comprise entre 1,5 et 10 Ir avec cinq crans de temporisation. L’ordre de déclenchement est donné sur une valeur efficace du courant de court-circuit Pour améliorer la sélectivité avec des fusibles ou d’autres disjoncteurs, il est possible de transformer une partie de la courbe court retard en une courbe inverse en choisissant le réglage I²t ON. Protection court retard contre les défauts intermittents Dans la zone de déclenchement court retard, les courants intermittents ne provoquant pas de déclenchement sont incrémentés dans Micrologic. Cette mémorisation est équivalente à la mémoire thermique du Long Retard et entraîne une réduction de la temporisation de déclenchement Court Retard. Protection instantanée Sur des courts-circuits élevés, il est nécessaire de déclencher instantanément pour limiter des contraintes sévères sur l’installation. La protection instantanée “I” est réglable en fonction du calibre de l’appareil et peut varier de 2 à 15 In. L’ordre de déclenchement est donné non plus sur une valeur efficace du courant de court-circuit, mais sur une valeur de crête Sur les appareils de type N1 et H1, la position supplémentaire “ OFF ” inhibe l’instantané. Sur les disjoncteurs de type H2,H3, et L1, la position supplémentaire “ OFF ” remonte le seuil de déclenchement instantané jusqu’au seuil maxi d’autoprotection du disjoncteur (seuil inférieur à la TED= répulsion des contacts) Autoprotection contre les courts-circuits à la fermeture DINF Les disjoncteurs Masterpact NT et NW sont équipés en standard d’une autoprotection destinée à faire déclencher instantanément l’appareil en cas de fermeture sur court-circuit (DINF) ../.. Protection against risk of damage

Protection against short-circuits Zone selective interlocking (ZSI) Principle : ZSI enables the control units to communicate with each other. The system is able to locate the short circuit or ground fault and clear it. Functionning : ZSI allows the circuit breaker to ignore its preset delay when necessary. The fault is cleared by the nearest upstream circuit breaker with no intentional time delay. Advantages : Faster tripping time without sacrificing coordination Limitation of system stress by reducing amount of let through energy. Maximum : 100 circuit breakers interconnected whatever the configuration Return to contents

Protection against insulation faults Ground fault Ground fault protection Micrologic 6.0P Made mandatory by NEC Residual current Source Ground Return Ig Micrologic pour protéger contre les défauts d’isolement Les courants dus à des défauts d’isolement peuvent être dangereux pour les personnes (risque de contacts indirects) et les équipements (risque d’incendie). Pour s’en protéger, et pour répondre au mieux à tous les schémas d’installation, la gamme Micrologic intègre en standard : sur les unités 6.0, la protection terre, sur les unités 7.0, la protection à courant différentielle. La protection à courant différentiel Elle est imposée par les normes d’installations (CEI60 364) pour la protection des personnes et des biens dans les cas suivants : schémas de liaison à la terre de type TT, où les courants résultant des défauts d’isolement sont de faibles valeurs, réseaux de type TN ayant de grandes longueurs de câble, où le seuil instantané n’est pas suffisant pour protéger un court-circuit en bout de ligne. Cette protection est réglable en seuil de 500mA à 30 A et en temporisation pour assurer la sélectivité différentielle. Capteur rectangulaire externe obligatoire …/... Prevent risk of fire

Protection against insulation faults Earth leakage New Earth-leakage protection Micrologic 7.0P Mandatory per standards NFC 15100 and IEC 364 In a TT system, protects property against low level fault currents In a TNS system, protects installations where long cables are installed Micrologic pour protéger contre les défauts d’isolement Les courants dus à des défauts d’isolement peuvent être dangereux pour les personnes (risque de contacts indirects) et les équipements (risque d’incendie). Pour s’en protéger, et pour répondre au mieux à tous les schémas d’installation, la gamme Micrologic intègre en standard : sur les unités 6.0, la protection terre, sur les unités 7.0, la protection à courant différentielle. La protection à courant différentiel Elle est imposée par les normes d’installations (CEI60 364) pour la protection des personnes et des biens dans les cas suivants : schémas de liaison à la terre de type TT, où les courants résultant des défauts d’isolement sont de faibles valeurs, réseaux de type TN ayant de grandes longueurs de câble, où le seuil instantané n’est pas suffisant pour protéger un court-circuit en bout de ligne. Cette protection est réglable en seuil de 500mA à 30 A et en temporisation pour assurer la sélectivité différentielle. Capteur rectangulaire externe obligatoire …/... Return to contents

Hardware Principle and power supply ZSI M2C/M6C ASIC Basic protection L S I G V Microprocessor Additional functions (monitoring, measurement, analyses...) COM Module Synchronous Exchange data Mitop Air CT Opto Com Plugs : Calibre/ perform. Isolation Optical coupling Iron CT Power supply Trip unit power supply Surplus Optional external 24V DC power supply for : programmable contact power supply and when breaker is open : Powers display, Identification, adjustments through “Com” module Test kit Standard Internal voltage sensor <690v or optional external voltage sensor for µP power supply and measurement 24V DC BUS power supply Return to contents

Metering Principle Refresh Sampling 544µs 1 s 1s Integration Instant. data 15 s (sliding) 5..60 min (fixed) 5 to 60 min Integration Demand data Return to contents

RMS measurement Sampling frequency : 1838Hz One measurement point every 544µs 36 points per cycle RMS value calculation 10ms 20ms

Others functions Principle Meter Monitor Programmable Controller Logging: Data Logs Historical Data Maintenance Data Instant. data IRMS P Q S EP EQ Min / Max Max I1 : Min f17 Demand Thresholds (pickup & dropout) Iavg Pavg Relay Activation M2C/M6C Breaker trip Mitop Return to contents

Demand measurements fixed or sliding window fixed window Measurement of active reactive and apparent power time intervals programmable between 5mn and 1h values are refreshed at the end of the time interval Sliding window Measurement of current and active reactive and apparent power values are refreshed every 15 sec sliding fixed 5mn to 1h t 15s

Power factor PF Power factor PF = P/S P: active power S: apparent power Nota : cos ф= P1/S1 P1 : Fundamental active power S1 : Fundamental apparent power apparent power S kVA reactive power Q kvar active power P kW

Power factor PF Sign convention Reactive Power Watts + VArs + P.F - VArs - P.F + Watts - Reactive Power Watts + VArs + P.F + VArs - P.F - Watts - Reactive Power Watts - VArs + P.F - Watts + VArs + P.F + Active Power Active Power Active Power Watts - VArs - P.F - Watts + VArs - P.F + IEEE : PF sign = - Q sign(P/S) IEEE altenate : PF sign = Q sign(P/S) IEC : PF sign = sign(P/S)

Monitoring and/or protection of loads based on current, voltage, power, frequency Current and voltage unbalance Maximum current (per phases & neutral) Minimum / maximum voltage Minimum / maximum frequency Reverse power Phases rotation

Monitoring and/or protection of loads Principle of operation variable T1 Activation threshold Deactivation threshold T2 t Alarm generated by Micrologic

Monitoring and/or protection of loads Current unbalance ANSI 46 E max Application Protect rotating machines (motors, generators) operating on balanced three-phase supplies against ageing and slowing Balance single-phase loads on three-phase distribution systems Detect phase loss Principle the function compares the current unbalance to the threshold previously set by the user, for a time greater than the time delay Example I1 = 2500A I2 = 4000A I 3 = 3400A Iaverage. = 3300A Emax = I1 - Iave. = 800A DI = Emax /Iaverage = 24% I average I1 I2 I3

Monitoring and/or protection of loads Maximum current per phase and N Application Obtain the maximum current demand in the presence of major load fluctuations (welding machines, crushers, hoists) Principle This function calculates the maximum demand value of the current in each Ph and Neutral over a sliding time interval. The interval can be adjusted between five minutes and one hour. The value is refreshed every 15s I max demand t1 t2

Monitoring and/or protection of loads Voltage unbalance ANSI 47 Application Protect loads against vibrations, temperature rise and premature ageing Principle The function compares the voltage unbalance to the threshold previously set by the user, for a time greater than the time delay. Example U12 = 330v U23 = 390v U31 = 10V U average. = 243v Emax = U31 - U average. =233v DU = Emax /U average. = 96% U average E max U12 U23 U31

Monitoring and/or protection of loads Minimum voltage ANSI 27 Application Protect motors against voltage drops resulting in loss of torque and a major increase in the current drawn by the motor Check the output voltage of a generator… Principle The function is activated when one of the phase to phase voltages is below the threshold set by the user, for a time greater than the time delay. The function is desactivated when all 3 phase are above the threshold. U12 U23 U31 Activation threshold U min dectivation threshold U min

Monitoring and/or protection of loads Minimum voltage ANSI 27 U max activation threshold (maxi 1200V) U min deactivation threshold T2 T1 U min activation threshold (mini 100V) 100V Alarm t

Monitoring and/or protection of loads Maximun voltage ANSI 59 Application Protect loads (motor and transformer) against abnormally high voltages that can result in irreversible damage Avoid saturation of transformers Principle The function is activated when one of the phase to phase voltages is above the threshold set by the user, for a time greater than the time delay The function is desactivated when all 3 phases are under the threshold Activation threshold U max deativation threshold U max

Monitoring and/or protection of loads Maximum voltage ANSI 27 U max activation threshold (maxi 1200V) T2 Deactivation threshold U min activation threshold (mini 100V) Alarm t

Monitoring and/or protection of loads Reverse power ANSI 32P Application Protect diesel engines from generators operating as motors marine applications, generator sets… Avoid power transfers between two parallel-connected sources Principle The function is activated when the active power flowing in the direction opposite set by the user is greater than the activation threshold for a time greater than the time delay. Activation Reconnection Deactivation Load shedding Reverse power P kW

Monitoring and/or protection of loads Minimum frequency ANSI 81 Application Check the frequency of a generator Check the frequency across the terminals of a motor Avoid saturation of transformers following a drop in frequency Principle The function is activated when the frequency exceeds the set threshold for a time greater than the time delay

Monitoring and/or protection of loads Minimum frequency ANSI 81 F max activation threshold (maxi 540Hz) T2 F min deactivation threshold T1 F min activation threshold (mini 45Hz) 45Hz Alarm t

Monitoring and/or protection of loads Maximum frequency ANSI 81 Application Check the frequency of a generator Check the frequency across the terminals of a motor Principle The function is activated when the frequency exceeds the set threshold for a time greater than the time delay

Monitoring and/or protection of loads Maximum frequency ANSI 81 540Hz T1 F max activation threshold (maxi 540Hz) T2 F max deactivation threshold F min activation threshold (mini 45Hz) Alarm

Monitoring and/or protection of loads Phase rotation Application Avoid reversed rotation of motors Check on coupling between generator and distribution system (phase sequence) Principle The function compares the actual phase sequence with the selected sequence Alarm only Not available if the 400 Hz frequency is set F1 F3

Load shedding and reconnection based on current Application Ensure the continuity of service of priority circuits by disconnecting non-priority loads Principle The function is activated when the current exceeds the set threshold for a time greater than the time delay reconnection shedding I

Load shedding and reconnection based on power P kW Application Ensure the continuity of service of priority circuits by disconnecting non-priority loads Principle The function is activated when the power exceeds the set threshold for a time greater than the time delay 10MW Activation Deactivation 100 kW t Alarm shedding reconnection

Programmable controller Alarms and relay outputs with distinct thresholds Activation T1 Alarm on supervisor via Com module activation and desactivation after a programmable time delay M2C or M6C relay outputs without latching ==> follows the state of the alarm with temporary latching programmable from 1s to 6mn with permanent latching ==> needs a resetting Deactivation T2 t Alarm Relays without latching Relays with temporary latching from 1s to 360s possible Resetting Relays with permanent latching Reset

Programmable controller Alarms and relay outputs with identical thresholds on supervisor via Com module activation and desactivation after a programmable time delay M2C or M6C relay outputs without latching ==> follows the state of the alarm with temporary latching programmable from 1s to 6mn with permanent latching ==> needs to be reset Activation/ T1 T2 Deactivation Alarm Relays without latching Relays with temporary latching from 1s to 360s possible resetting Relays with permanent latching Reset

Harmonic Definition A periodic signal is a combination of : The original sinusoidal signal at the fundamental frequency Other sinusoidal signals (the harmonics) with frequencies that are whole-number multiples of the fundamental frequency A DC component, where applicable Return to contents

Harmonic Origin and effects Origin Harmonics are caused by non linear loads such as : Welding machines arc/induction furnaces Variable speed drive office equipment (computer, copy machine, neon lighting…) Effects The flow of harmonics in distribution systems can cause serious problems such as : Increased currents (oversized neutral) Additional losses and premature aging Disturbances to loads due to voltage harmonics Disturbances in communication networks Return to contents

Harmonic Quality indicators These indicators are the indispensable tools used to determine any required corrective action : Measurement of the fundamental Phase displacement of the fundamental Harmonic distorsion THD cos ф, power factor K factor, crest factor Distorsion power, distorsion factor Amplitude spectrum up to order 31 st Displacement spectrum Return to contents

Harmonic Total Harmonic Distortion Current THD% Current per phase Neutral current Voltage THD% Phase to phase voltage Phase - Neutral voltage

Harmonic Fast Fourier Transfert Current harmonics each phase plus neutral up to 31st order Voltage harmonics phase to phase phase to Neutral Return to contents

Harmonic Waveform capture (WFC) Triggered manually 4 cycles magnitude I : [ 0- 1.5 In] magnitude V: [0- 690V] 64 points /cycle Triggered on event (alarm > 1s) 4 cycles (on supervisor) triggered by a fault 11/13 cycles (50/60 Hz) magnitude I : [ 0- 20 In] 18/15 points /cycle (50/60 Hz) WFC available through the COM option only

Asic and microprocessor self-protection Auto-test µPro & automatic reset Asic watchdog Maintenance log time recording : Asic maxi temperature ASIC error code ASIC Self protection : - temperature - power supply deficiency Data exchange reading

Asic and microprocessor self-protection ASIC self protection resulting in a circuit breaker tripping : excessive temperature >120° ASIC power supply deficiency (overvoltage) Indication : LED Ap « ON » display of error code on LCD screen Events log recording ===>supervisor µP self protection never trip the circuit-breaker Memory check sum Time-out Detection by the µPro of a serial link failure between µP and the ASIC Events log recording ===>supervisor (if communication still healthy)

Isn ’t it simple and nice ? That ‘s all for today ! Isn ’t it simple and nice ?