Jovian Extinction Events JEE2014 Call for Observations Jovian Extinction Events JEE2014 Call for Observations Modeling the Jovian dust field, moon atmospheres,

Slides:



Advertisements
Similar presentations
Multi-Station Reduction Technique IOTA ANNUAL MEETING November 20 th – 22 nd, 2009 & (234) Barbara occultation of Nov 21, 2009 Orlando, Florida.
Advertisements

Video cameras and photometry Dave Herald. Background Occultations are usually step events When video introduced, it overcame issues of Personal Equation,
Io and Europa Atmosphere and Io Torus Detection Through Occultations and Conjunctions Scott Degenhardt International Occultation Timing Association
SSA-NEO-ESA-HO-019/1.3 Solar System Missions Division (SRE-SM) SSA-NEO 12 Oct 2009 Detlef Koschny, Gerhard Drolshagen, Nicolas Bobrinsky European Space.
Jovian Extinction Events JEE2012 Observing Campaign Preliminary Results Jovian Extinction Events JEE2012 Observing Campaign Preliminary Results Modeling.
THESIS – the Terrestrial and Habitable-zone Exoplanet Spectroscopy Infrared Spacecraft a concept for a joint NASA/ESA exoplanet characterization mission.
1. 2 Joy Nichols, Jennifer Lauer, Doug Morgan, and Beth Sundheim Harvard-Smithsonian Center for Astrophysics Eric Martin Northrop Grumman Space Technology.
Advanced CCD Workshop Arne A. Henden
Radio Astronomy By looking at the radio part of the EM spectrum, we can get a different perspective on the nature of the universe. the atmospheric window.
000509EISPDR_SciInvGIs.1 EIS Performance and Operations Louise Harra Mullard Space Science Laboratory University College London.
Robin Hogan, Chris Westbrook University of Reading Lin Tian NASA Goddard Space Flight Center Phil Brown Met Office Why it is important that ice particles.
Astronomical Solutions to Galactic Dark Matter Will Sutherland Institute of Astronomy, Cambridge.
Robin Hogan, Chris Westbrook University of Reading Lin Tian NASA Goddard Space Flight Center Phil Brown Met Office The importance of ice particle shape.
Monitoring Fish Passage with an Automated Imaging System Steve R. Brink, Senior Fisheries Biologist Northwest Hydro Annual Meeting 2014, Seattle.
Point Processing Histograms. Histogram Equalization Histogram equalization is a powerful point processing enhancement technique that seeks to optimize.
CREATING A PAYMENT REQUEST FOR A NEW VENDOR
IK Slide 0 First look at the WCM data from July 2012 September 6 th 2012 Ian Kirkman.
Diffraction around an edge and through an aperture
Electro-magnetic radiation
Lots of fun! Win valuable prizes!
Putting Statistics to Work
Absorbance spectroscopy
Evolution of Magnetic Setting in Flare Productive Active Regions Yixuan Li Space Weather Research Lab New Jersey Institute of Technology.
Copyright © 2009 Pearson Education, Inc. Chapter 35 Diffraction and Polarization.
Optical Astronomy Imaging Chain: Telescopes & CCDs.
Light what is it?. Light what is it? moving energy wave or particle?
2013 Annual IOTA Meeting, October 4-6, 2013 Toronto, Ontario, Canada.
Radiation & Photometry AS4100 Astrofisika Pengamatan Prodi Astronomi 2007/2008 B. Dermawan.
Microwindow Selection for the MIPAS Reduced Resolution Mode INTRODUCTION Microwindows are the small subsets of the complete MIPAS spectrum which are used.
Remarkable Low Temperature Emission of the 4 November 2003 Limb Flare J. Leibacher, J. Harvey, GONG Team (NSO), G. Kopp (CU/LASP), H. Hudson (UCB/SSL)
Telescopes (Chapter 6). Based on Chapter 6 This material will be useful for understanding Chapters 7 and 10 on “Our planetary system” and “Jovian planet.
The Nature of Light In Astronomy. Herschel’s Infrared experiment Invisible (to our eyes) light immediately beyond the color red is call infrared light.
Methods Eye (visible window) Camera – film Camera – CCD (Digital) Collecting Electromagnetic Information.
Your Observing Challenge: White Dwarfs in Open Star Clusters.
Jupiter Mutual Events Sep 2014 to Aug 2015.
Chapter 7 Light.
Occultations of the Galilean Satellites - How Accurate are the Ephemerides? Tony Mallama 32nd Annual Meeting of IOTA 2014 July 12-13, College Park MD.
Understanding Persistence: A 3D Trap Map of an H2RG Imaging Sensor
Announcements No lab this week due to observing night last night There will be a lab after class next week. If the skies are clear expect to stay out until.
The B-V colors and photometric variability of Nix and Hydra, Pluto’s two small satellites Max Mutchler (STScI) S. Alan Stern (SwRI) Hal Weaver (JHU/APL)
What can we learn from the luminosity function and color studies? THE SDSS GALAXIES AT REDSHIFT 0.1.
1 Video Camera for Photometry: It can be done.. ….but… IOTA July 12, 2014 John Menke x x x
CCD Detectors CCD=“charge coupled device” Readout method:
6/11/2012 Building on NEAT concept - M. Gai - INAF-OATo 1 Building on NEAT concept M. Gai – INAF-OATo (a) Extension of science case (b) Payload implementation.
Jovian Extinction Events JPL Confirmation of JEE Data. Jovian Extinction Events JPL Confirmation of JEE Data. Modeling the Jovian dust field, moon atmospheres,
Jovian Extinction Events JPL Confirmation of JEE Data. Jovian Extinction Events JPL Confirmation of JEE Data. Modeling the Jovian dust field, moon atmospheres,
PHEMU The Bucharest observational campaign Romanian Astronomical Institute of The Romanian Academy - AIRA ADRIAN SONKA, MARCEL POPESCU, DAN ALIN.
Use this loopy starter to highlight areas you need to focus on during this revision lesson. Stop the presentation after Slide 11 - Q 10. Replay at the.
NICMOS Calibration Challenges in the Ultra Deep Field Rodger Thompson Steward Observatory University of Arizona.
14 January Observational Astronomy SPECTROSCOPIC data reduction Piskunov & Valenti 2002, A&A 385, 1095.
Flare Prediction and the Background Corona Coronal Diagnostic Spectrometer Wolter-Schwarzschild Type 2 telescope Two separate spectrometers- the Normal.
PWV LIGHT §Radio Waves §Microwaves §Infrared Light §Visible Light §Ultraviolet Waves §X-Ray Waves §Gamma Waves.
Astronomy 1010 Planetary Astronomy Fall_2015 Day-23.
CCD Image Processing: Issues & Solutions. CCDs: noise sources dark current –signal from unexposed CCD read noise –uncertainty in counting electrons in.
Atmospheric extinction Suppose that Earth’s atmosphere has mass absorption coefficient  at wavelength. If f 0 is flux of incoming beam above atmosphere,
Digital Light Sources First introduced in 2001.
Observation of RR Lyrae Variable RS Boo Results and Future Work
Chapter 35-Diffraction Chapter 35 opener. Parallel coherent light from a laser, which acts as nearly a point source, illuminates these shears. Instead.
Light What is it?.
NIRSpec Time Series Observations
Single Object & Time Series Spectroscopy with JWST NIRCam
CCD Image Processing …okay, I’ve got a bunch of .fits files, now what?
Institute of Cosmos Sciences - University of Barcelona
Electromagnetic Waves
Photometric Analysis of Asteroids
Announcements HR Diagram lab will be extended for one week. I’ll talk about it today. Homework: Chapter 9 # 1, 2 & 3 Next week is a Dark Sky Night. If.
Karen Meech Institute for Astronomy TOPS 2003
Direct imaging discovery of a Jovian exoplanet within a triple-star system by Kevin Wagner, Dániel Apai, Markus Kasper, Kaitlin Kratter, Melissa McClure,
DIFFRACTION AND INTERFERENCE
CHEOPS - CHaracterizing ExOPlanet Satellite
Presentation transcript:

Jovian Extinction Events JEE2014 Call for Observations Jovian Extinction Events JEE2014 Call for Observations Modeling the Jovian dust field, moon atmospheres, Europa water geysers, and Io’s Torus 2014 Annual IOTA Meeting, July 12-13, 2014 Baltimore, Maryland

(Filter), Color, Wavelength nm (I)Infrared (not visible) (R) Red Orange Yellow (V, G) Green (B) Blue Violet (UV) Ultra Violet (not visible) nm nm nm nm nm nm < 380 nm >750 nm White light spectrum of colors

Galileo probe found 600 nm particles around Io. Our multicolor photometry of Io particles demonstrate the scattering effect. Blue photons were significantly scattered while red photons were barely scattered. Our multicolor photometry of Io particles demonstrate the scattering effect. Blue photons were significantly scattered while red photons were barely scattered.

600 nm PARTICLE Rayleigh and Mie scattering of photons nm nm nm nm nm nm Raleigh Mie

The Hubble Challenge Why can’t I see the atmosphere surrounding Io when it transits Jupiter? Question: Answer: Absolutely you can… you just have to do your homework!

The tiny but important details: 1)HST filter should sample 500 nm or shorter wavelength photons (the shorter the better). 2)The use of a narrow band filter will only sample a narrow band of the total represented scattered photons (meaning the derived magnitude loss will never equal the broadband magnitude loss). 3)Jupiter is an illuminated sphere with a constant intensity gradient (it makes a horrible backdrop!). It is essential to establish the trend of this background gradient trend to normalize Io’s atmosphere transit data. 4)Europa’s atmosphere covers 44% of Jupiter during transit making it impossible to derive a background trend. 5)Lots of pixel binning statistics increases S/N of JEE trends. 6)Io transits are ideal (if the appropriate wavelength light is sampled).

Figure 2 Europa transit (Mallama, 2013)  Mallama (2013) Fig 2 of a Europa transit incorrectly identified the observed wavelength as being 410 nm when in fact it was 544 nm where little if any extinction would be detected (tiny detail #1 & #4).  No background trend was measured to normalize the derived “scanned luminosity” (tiny detail #3 & #5).  Mallama (2013) incorrectly states that the JEE Campaign claims a trend should be visible equivalent to the red line simulation when we have made no such claim for this Hubble image, nor would we based on the above facts. U2YHA305T_D0M_PC1.TIF

Rayleigh and Mie scattering of photons nm nm nm nm nm nm D0M_TIFF_DOCUMENT = "U2YHA305T_D0M_PC1.TIF" CENTER_FILTER_WAVELENGTH = BANDWIDTH = START_TIME = T20:19:16 STOP_TIME = T20:19:16 EXPOSURE_DURATION = 0.2 U2YHA305T 544 nm 600 nm PARTICLE

Figure 1 Io transit (Mallama, 2013)  Mallama (2013) Fig 1 of an Io transit incorrectly identified the observed wavelength as being 555 nm when in fact it was 409 nm making this Hubble image an ideal candidate to detect Io’s atmosphere. (tiny detail #1 & #6).  No background trend was measured to normalize the derived “scanned luminosity” (tiny detail #3 & #5).  Mallama (2013) incorrectly states that the JEE Campaign claims a 15% extinction trend should be visible equivalent to the red line simulation. HST used a very narrow bandwidth filter for this image, so the expected detected extinction would realistically be a fraction of the total broadband extinction (tiny detail #2). U3AP0308T_D0M_PC1.TIF

Rayleigh and Mie scattering of photons nm nm nm nm nm nm D0M_TIFF_DOCUMENT ="U3AP0308T_D0M_PC1.TIF" CENTER_FILTER_WAVELENGTH = BANDWIDTH = START_TIME = T07:56:08 STOP_TIME = T07:56:16 EXPOSURE_DURATION = 8. U3AP0308T 409 nm 600 nm PARTICLE

background trend 16 Io radii width intensity profile 4 Io radii vertical binning HST Image U3AP0308T_DOM_PC1 Use background to normalize Io atmosphere

The IMCCE Challenge Why can’t I see JEE trends in PHEMU Campaign mutual events? Question: Answer: Absolutely you can… you just have to do your homework!

Rayleigh and Mie scattering of photons nm nm nm nm nm nm 600 nm PARTICLE PHEMU IMCCE Jovian mutual events PHEMU Tech notes recommend using a V, R, or I filter to observe Jovian mutual events, with an emphasis on preferably using an R filter. This would exclude sampling of the wavelengths with dominant JEE scattering.

There are datasets in the IMCCE database that demonstrate JEE trends. Here are two random examples fitted with JPL Horizons ephemeris

Rayleigh and Mie scattering of photons nm nm nm nm nm nm SUMMARY PHEMU IMCCE Jovian mutual events < 500 nm dominate JEE detectability 600 nm PARTICLE U2YHA305T 544 nm U3AP0308T 409 nm X X

 Typical wing data outside of the mutual event submitted to IMCCE is usually 6 to 10 minutes in length. Typical JEE measurements are observed 10s of minutes outside the mutual event.  Below highlights this omission of JEE data. The two lightcurves below are the exact same event. The one on the left is with 6 minutes of wing data while the one on the right is +/- 60 minutes of center of the mutual event.

Popular statement: “The 1971 occultation of Beta Scorpii C by Io showed no extinction trend. Therefore JEE can’t be real.”

Look closely at the length of this lightcurve prior to ingress. It is 30 seconds of time. The extinction event would have begun 1260 seconds prior to ingress. 30 seconds is not enough data to resolve the miniscule magnitude change in only 30 seconds of time. In 30 seconds Beta Scorpii C only moved 0.2 Io radii. To detect a full extinction event you would have to go out 9 or more radii. If you can find data from May 14, 1971 that starts a minimum of 21 minutes prior (this is where Beta Scorpii C was at 9 Io radii), and preferably 30 minutes prior to get good wing data, then one can begin to look at this as a valid argument against JEE. This event has insufficient data to make an argument for or against JEE

Uninformed statement #1 about data from video: “Video cannot provide accurate photometry.” Uninformed statement #1 about data from video: “Video cannot provide accurate photometry.”

The Video Challenge Reply: I have issued a challenge to others to name a photometric target to pit video photometry against CCD photometry. To date no one has been willing to accept the challenge (so my scientific viewpoint is that you do not have a valid argument against video photometry if you aren’t willing to put it to the true test!). So I thought to myself, what is the hardest target I could think of to challenge myself…. How about an exoplanet transit?!

Video data (left) compared to CCD data (right) Exoplanet transit HD b Ummm, I believe the answer for video is not only YES, the quality difference speaks for itself.

Video data compared to calibrated CCD FITS are identical in trend for the same type JEE.

1)Systematic noise (removed by subtracting calibration frame) a)Hot pixels b)Thermal gradient across CCD chip 2)Random noise (removed by binning multiple data points into one) a)Electronic readout noise frame to frame b)Random thermal photons c)Electronic noise from internal circuit (“snow”) Types of noise in video and how to reduce them:  NTSC video produce frames per second, 25 frames per second at 8 bit resolution.  Using carefully placed background and measurements apertures in video photometry reduction software such as LiMovie we obtain a background corrected photometry measurement for each individual frame.  To significantly reduce scintillation and other noise contributions we then bin 10 seconds of data into a single data point, i.e. 300 frames for NTSC or 250 frames for PAL into one point.  This yields 256 x 300 = 76,800 or > 16 bit statistical resolution, easily reaching magnitude stnd dev. Video wins at photometry by the sheer volume of data greatly leveraging the statistics to increase the S/N!

Uninformed statement #2 of video data: “Video data cannot be calibrated.” Uninformed statement #2 of video data: “Video data cannot be calibrated.” With 5 simple lines of code in an AVISynth script I was able to subtract the calibration frame (left) from the raw video (top left) and create a new calibrated video (top right). (

 Sampling the intensity profile diagonally across the raw video shows the non-flat response (mostly due to thermal heat on the CCD array).  After subtracting the calibration image from the raw video a test of the same region of intensity shows the response has been flattened (and the previous slide shows the hot pixels and defects were also removed).

Uninformed statement #3 about JEE video: “The glare from Jupiter makes it impossible to get accurate photometry.” We routinely reduce lunar occultations near the bright limb of our moon by carefully configuring the background aperture to be tangent to the bright limb. The same applies with Jupiter. Note the yellow measurement aperture right up against Jupiter measures zero ADU.

Uninformed statement #4 about video data: “Gamma is the source of JEE trend in our lightcurves.” We have multiple lightcurves of simultaneous observations with some cameras with a gamma = 1 and another = 0.45, and both lightcurves demonstrate JEE dimming.

Uninformed statement #5 about video data: “Camera response from merging intensities cause our JEE trends.”

Some will declare all JEE invalid because a portion of a single video was saturated. It is easy to see where this lightcurve trend goes flat as the merging moons enter saturation.

We can toss out the saturated portion of this video and the JEE trend is still prominent.

Saturated data is rare in our data archives and is discarded when identified.

Saturation theory as source of extinction trend doesn’t apply here. This entire video is not in saturation. Note the peak from Europa shrinks in size relative to Io. This coincided with Europa passing behind Io line of sight.

There is no mechanism by which a camera can randomly pick the moon in back to diminish its intensity every time two moons merge intensities. All of our extinction trends involving two moons have been identified as directly linked to the moon behind another moon having a known atmosphere.

Separate photometry 14” Meade Combined photometry 80mm finderscope

This event randomized every aspect of observation and reduction:  one large field of view to combine Io and Europa under one aperture and normalized to Ganymede  the other a small FOV to derive separate photometry of Io and Europa and then normalizing Europa by Io.  The geometry of the intensities on the CCDs are drastically different decoupling the JEE trend from Point Spread Function or any other type of detector response of merging intensities. I II I+II III

Europa 20 Europa radii A conjunction with no merging moons (we have many of these). 2 independent observers recorded the same JEE trend. Inverting the lightcurve by superimposing the extinction data on JPL Horizon ephemeris shows the trend fits in our approximate 20 Europa radii atmosphere.

Horizons ephemeris displaying path of probing objects behind Europa Europa 20 Europa radii

Europa Extinction data tracing out approximately 20 radii atmosphere

Jovian Extinction Event data trends are not reporting anything new. JEE data models match published data for expected detection. JEE observing merely presents an alternative observing modality. If the source of JEE data was just noise or other camera response we would not get the following consistent results from varied observers…

+ Schneider et al. “MUTUAL EVENT OBSERVATIONS OF IO'S SODIUM CORONA (figure 7)” Dividing the number of JEE scattered photons in the volume by the column depth we have derived a first order assumption (1 particle per 1 photon at about 3 radii): Io column density of approximately 1.11E+11 cm -2 (+) (Our detected density matches published densities)

 Download predictions from JEE site:  This will give you the best way for planning when to start and stop an observing run.  Try to acquire up to 15 minutes (or longer) of data outside the anticipated time frame of JEE data.  If you use JME predictions from OccultWatcher just observe +/- 5 times the occultation duration of Io occulting a moon and +/- 10 times the occultation duration when Europa is occulting a moon.  Exposure:  Pixel intensity for the target moon and all reference moons should be between % of maximum intensity fill throughout the entire video.  If you camera does not have variable gain then you can use an aperture mask to dim the moons of interest. (an aperture mask is preferred over defocusing for JEE work).  Wavelength:  If you don’t have filter capability observe broadband unfiltered.  If you can only observe with one filter use B.  If you can do two or more alternate between R-B, V-B, or I-B.  Camera type:  Use a video camera with as high a frame rate as possible.  Use a CCD camera with as high an image cadence rate as your system can provide. How to best observe a JEE

For conjunctions (near-occultations) by Io or Europa an estimated predicted lightcurve is provided based on our current JEE models.

For occultations by Io or Europa the expected JEE trend outside the occultation is displayed. The occultation is removed (the gap in the lightcurve).

A PDF with detailed data is in each main folder:

Observe! Predictions, results, and discussions Yahoo Discussion Group JEE_Talk

AAVSO Alert Notice 464: Observers requested for Jovian Extinction Events (JEE2012), Arlot, J.-E., Thuillot, W.,Ruatti, C. and 116 coauthors observers of events: 2009, The PHEMU03 catalogue of observations of the mutual phenomena of the Galilean satellites of Jupiter, Astronomy and Astrophysics, Volume 493, Issue 3, pp Bohren, Craig F.; Huffman, Donald R. Absorption and scattering of light by small particles, New York: Wiley, 1983 Michael E. Brown & Richard E. Hill Discovery of an extended sodium atmosphere around Europa Nature 380, (21 March 1996); doi: /380229a0 Burger, M.H. et al. “Mutual Event Observations of Io's Sodium Corona” (2001) 37X/563/2/1063/52792.text.htmlhttp:// 37X/563/2/1063/52792.text.html Burger, M.H. et al. “Europa’s neutral cloud: morphology and comparisons to Io Matthew H. Burger & Robert E. Johnson” Icarus 171 (2004) 557–560, Degenhardt, S. Exoplanet HD b transit results: Degenhardt, S., “How to Calibrate Video” tutorial: Degenhardt, S. et. al (2010), Io and Europa Atmosphere Detection through Jovian Mutual Events, The Society for Astronomical Science: Proceedings for the 29th Annual Symposium on Telescope Science, p Degenhardt, S.M., “JEE Call for Observers” (2012) Degenhardt, S.M. (2012), Yahoo Discussion Group JEE_Talk, References

Degenhardt, S. M., Jovian Extinction Event Predictions and Reduction Methods, Author and developer: Observations and data from S. Aguirre, S. Degenhardt, M. Hoskinson, A. Scheck, B. Timerson, D. Clark, T. Redding, J. Talbot, JPL Horizons On-Line Degenhardt, S.M., “Io atmospheric extinction predictions for 2009 and 201o Jovian Mutual Events” (2009) Christopher Go. Io shadow transit on Ganymede. Christopher Go, Cebu, Philippines, E. Kardasis. The use of technology in capturing details on Jupiter's system with small telescopes. In European Planetary Science Congress 2012, page 927, September HST Image U3AP0308T_DOM_PC1.TIF of Europa transit: Krüger, Harald; Krivov, Alexander V.; Sremčević, Miodrag; Grün, Eberhard (2003). Impact-Generated Dust Clouds Surrounding the Galilean Moons. Icarus, Volume 164, Issue 1, p Kuznetsov, A.A. et. al, “Formation of zebra pattern in low-frequency Jovian radio emission” (2012), arXiv: v1 [astro-ph.EP], Planetary & Space Science LiMovie Mallama, A., (2013), The Atmospheres of Io and Europa Are Transparent, The Strolling Astronomer, Volume 55, No. 4, Autumn 2013 References (cont.)

Miyashita, K., LiMovie, (2008) software to photometrically reduce AVIs. net.ne.jp/k_miyash/occ02/limovie_en.htmlhttp://www005.upp.so- net.ne.jp/k_miyash/occ02/limovie_en.html NSDC (Natural Satellites Data Center) database web address: O’Leary, B “The occultation of Beta Scorpii C by Io and its implication”. Bulletin of the American Astronomical Society 3, 373. PHEMU Observing Campaign Tech notes 3, suggestion of V, R, I filter: Poddany S., Brat L., Pejcha O., New Astronomy 15 (2010), pp , Exoplanet Transit Database. Reduction and processing of the photometric data of exoplanet transits (arXiv: v1) Exoplanet Transit Database. Reduction and processing of the photometric data of exoplanet transits Shadick, S. Exoplanet HD b transit CCD camera results: Schneider, N. M. et al., “The structure of Io's corona” (1991), ApJ, 368, 298 Solar System Dynamics Group, Horizons On-Line Ephemeris System, Author : Warner, B., “Lightcurve Photometry and Analysis”, (2006), Springer Science+Media, Inc. References (cont.)