LECTURE 18, NOVEMBER 2, 2010 ASTR 101, SECTION 2 INSTRUCTOR, JACK BRANDT 1ASTR 101-3, FALL 2010.

Slides:



Advertisements
Similar presentations
LECTURE 21, NOVEMBER 16, 2010 ASTR 101, SECTION 3 INSTRUCTOR, JACK BRANDT 1ASTR 101-3, FALL 2010.
Advertisements

LECTURE 15, OCTOBER 21, 2010 ASTR 101, SECTION 3 INSTRUCTOR, JACK BRANDT 1ASTR 101-3, FALL 2010.
Notes 30.2 Stellar Evolution
LECTURE 16, OCTOBER 26, 2010 ASTR 101, SECTION 3 INSTRUCTOR, JACK BRANDT 1ASTR 101-3, FALL 2010.
Copyright © 2010 Pearson Education, Inc. Clicker Questions Chapter 12 Stellar Evolution.
George Observatory The Colorful Night Sky.
Life Cycle of a Star.
PHYS The Main Sequence of the HR Diagram During hydrogen burning the star is in the Main Sequence. The more massive the star, the brighter and hotter.
Stellar Evolution Describe how a protostar becomes a star.
Warm Up 6/6/08 If star A is farther from Earth than star B, but both stars have the same absolute magnitude, what is true about their apparent magnitude?
Stars & Galaxies.
A star is born… A star is made up of a large amount of gas, in a relatively small volume. A nebula, on the other hand, is a large amount of gas and dust,
Fill in the chart when you see a yellow star. Take notes on the stars and events as well.
Star Life Cycle.
LECTURE 19, NOVEMBER 4, 2010 ASTR 101, SECTION 3 INSTRUCTOR, JACK BRANDT 1ASTR 101-3, FALL 2010.
Review for Quiz 2. Outline of Part 2 Properties of Stars  Distances, luminosities, spectral types, temperatures, sizes  Binary stars, methods of estimating.
Objectives Determine the effect of mass on a star’s evolution.
Stellar Evolution. Basic Structure of Stars Mass and composition of stars determine nearly all of the other properties of stars Mass and composition of.
The Evolution of Stars - stars evolve in stages over billions of years 1.Nebula -interstellar clouds of gas and dust undergo gravitational collapse and.
Chapter 26 Part 1 of Section 2: Evolution of Stars
Copyright © 2010 Pearson Education, Inc. Chapter 12 Stellar Evolution.
What is the Lifecycle of a Star? Chapter Stars form when a nebula contracts due to gravity and heats up (see notes on formation of the solar system).
Mike Chris. Stars begin as a nebula, or clouds scattered dust made mostly of hydrogen As the nebula collapses the contents of it begin to to heat up.
NOT THOSE TYPES OF STARS! LIFE CYCLE OF STARS WHAT IS A STAR? Star = ball of plasma undergoing nuclear fusion. Stars give off large amounts of energy.
THE LIFE OF A STAR
THE LIFE CYCLES OF STARS. In a group, create a theory that explains: (a)The origin of stars Where do they come from? (b)The death of stars Why do stars.
Galaxies The Life and Death of the Stars. A galaxy is a cluster of stars, gas, and dust that are held together by gravity. There are three main types.
Birth and Death of Stars
Life Cycle of Stars. Stars are born in Nebulae Vast clouds of gas and dust Composed mostly of hydrogen and helium Some cosmic event triggers the collapse.
Pg. 12.  Mass governs a star’s properties  Energy is generated by nuclear fusion  Stars that aren’t on main sequence of H-R either have fusion from.
Birth and Life of a Star What is a star? A star is a really hot ball of gas, with hydrogen fusing into helium at its core. Stars spend the majority of.
Stellar Evolution. NGC 3603 Bok globules and giant gaseous pillars (evidence of embryonic stars), circumstellar disks around young stars progressing to.
Lifecycle Lifecycle of a main sequence G star Most time is spent on the main-sequence (normal star)
1 Stellar Lifecycles The process by which stars are formed and use up their fuel. What exactly happens to a star as it uses up its fuel is strongly dependent.
A Star Becomes a Star 1)Stellar lifetime 2)Red Giant 3)White Dwarf 4)Supernova 5)More massive stars October 28, 2002.
Giant clouds of gas and dust The birthplace of stars! Nebula.
Stars.
Ch Stellar Evolution. Nebula—a cloud of dust and gas. 70% Hydrogen, 28% Helium, 2% heavier elements. Gravity pulls the nebula together; it spins.
Stars. A Star is an object that produces energy at its core! A mass of plasma held together by its own gravity; Energy is released as electromagnetic.
Life Cycle of Stars Nebula hundreds of light years in size contract under gravity
A Note Taking Experience.
Life Cycle of Stars Birth Place of Stars:
LIFE CYCLE OF A STAR.
Studying the Lives of Stars  Stars don’t last forever  Each star is born, goes through its life cycle, and eventually die.
Life Cycle of a Star. NEBULA A huge cloud of gas and dust within a galaxy where new stars are born. A nebula can be several light-years across.
Life Cycle of a Star Star Life Cycle: Stars are like humans. They are born, live and then die.
Stellar Lifecycles The process by which stars are formed and use up their fuel. What exactly happens to a star as it uses up its fuel is strongly dependent.
The Life Cycle of Stars. Cycle for all stars Stage One- Born in vast, dense clouds of gas, mostly hydrogen along with small amounts of helium, and dust.
Unit 1 Lesson 3 The Life Cycle of Stars
Bell Ringer 10/13 Why do we celebrate Columbus Day?
Unit 1: Space The Study of the Universe.  Mass governs a star’s temperature, luminosity, and diameter.  Mass Effects:  The more massive the star, the.
The life cycle of stars from birth to death
The Star Cycle. Birth Stars begin in a DARK NEBULA (cloud of gas and dust)… aka the STELLAR NURSERY The nebula begins to contract due to gravity in.
Death of Stars. Lifecycle Lifecycle of a main sequence G star Most time is spent on the main-sequence (normal star)
The Life Cycle of Stars.
Chapter 12: Stellar Evolution. Most stars spend a majority of their lives (~90%) on the main sequence (about 10 billion years for our Sun) Virtually all.
Stellar Evolution Chapters 16, 17 & 18. Stage 1: Protostars Protostars form in cold, dark nebulae. Interstellar gas and dust are the raw materials from.
THE LIFE CYCLE OF A STAR Objective: I will compare and contrast the life cycle of stars based on their mass.
Stellar Evolution (Star Life-Cycle). Basic Structure Mass governs a star’s temperature, luminosity, and diameter. In fact, astronomers have discovered.
Life Cycle of a Star! Chapter 28 Section 3.
© 2017 Pearson Education, Inc.
Stellar Evolution Chapters 16, 17 & 18.
Stars begin as gas and dust called a nebula.
Stars begin as gas and dust called a nebula.
From Birth to Death (Dust to Dust)
Life Cycle of a Star Star Life Cycle: Stars are like humans. They are born, live and then die.
Lifecycle of a star - formation
Goals Explain why stars evolve Explain how stars of different masses evolve Describe two types of supernova Explain where the heavier elements come from.
Lives of Stars.
Life of a Star.
Presentation transcript:

LECTURE 18, NOVEMBER 2, 2010 ASTR 101, SECTION 2 INSTRUCTOR, JACK BRANDT 1ASTR 101-3, FALL 2010

2

3

4

5

6

a) its core begins fusing iron. b) its supply of hydrogen is used up. c) the carbon core detonates, and it explodes as a Type I supernova. d) helium builds up in the core, while the hydrogen-burning shell expands. e) the core loses all of its neutrinos, so all fusion ceases. Question 3 The Sun will evolve away from the main sequence when

a) its core begins fusing iron. b) its supply of hydrogen is used up. c) the carbon core detonates, and it explodes as a Type I supernova. d) helium builds up in the core, while the hydrogen-burning shell expands. e) the core loses all of its neutrinos, so all fusion ceases. Question 3 The Sun will evolve away from the main sequence when When the Sun’s core becomes unstable and contracts, additional H fusion generates extra pressure, and the star will swell into a red giant.

ASTR 101-3, FALL 20109

10

ASTR 101-3, FALL

ASTR 101-3, FALL

ASTR 101-3, FALL

ASTR 101-3, FALL

a) red giants. b) pulsars. c) black holes. d) white dwarfs. e) red dwarfs. Question 1 Stars like our Sun will end their lives as

a) red giants. b) pulsars. c) black holes. d) white dwarfs. e) red dwarfs. Question 1 Stars like our Sun will end their lives as Low-mass stars eventually swell into red giants, and their cores later contract into white dwarfs.

ASTR 101-3, FALL

ASTR 101-3, FALL

a) an asteroid. b) a planet the size of Earth. c) a planet the size of Jupiter. d) an object the size of the Moon. e) an object the size of a sugar cube. Question 8 In a white dwarf, the mass of the Sun is packed into the volume of

a) an asteroid. b) a planet the size of Earth. c) a planet the size of Jupiter. d) an object the size of the Moon. e) an object the size of a sugar cube. Question 8 In a white dwarf, the mass of the Sun is packed into the volume of The density of a white dwarf is about a million times greater than normal solid matter.

ASTR 101-3, FALL

ASTR 101-3, FALL

ASTR 101-3, FALL

ASTR 101-3, FALL

a) mass transfer onto a white dwarf in a binary star system. b) repeated helium fusion flashes in red giants. c) rapid collapse of a protostar into a massive O star. d) the explosion of a low-mass star. e) the birth of a massive star in a new cluster. Question 11 A nova involves

a) mass transfer onto a white dwarf in a binary star system. b) repeated helium fusion flashes in red giants. c) rapid collapse of a protostar into a massive O star. d) the explosion of a low-mass star. e) the birth of a massive star in a new cluster. Question 11 A nova involves Sudden, rapid fusion of new fuel dumped onto a white dwarf causes the star to flare up, and for a short time become much brighter.

ASTR 101-3, FALL

ASTR 101-3, FALL

ASTR 101-3, FALL

ASTR 101-3, FALL

ASTR 101-3, FALL

a) the number of main sequence stars. b) the ratio of giants to supergiants. c) the luminosity of stars at the turnoff point. d) the number of white dwarfs. e) supernova explosions. Question 6 Astronomers determine the age of star clusters by observing

a) the number of main sequence stars. b) the ratio of giants to supergiants. c) the luminosity of stars at the turnoff point. d) the number of white dwarfs. e) supernova explosions. Question 6 Astronomers determine the age of star clusters by observing The H–R diagram of a cluster can indicate its approximate age. Turnoff point from the main sequence

ASTR 101-3, FALL

ASTR 101-3, FALL

ASTR 101-3, FALL

a) as a protostar. b) as a red giant. c) as a main-sequence star. d) as a white dwarf. e) evolving from type O to type M. Question 10 A star will spend most of its “shining” lifetime

a) as a protostar. b) as a red giant. c) as a main-sequence star. d) as a white dwarf. e) evolving from type O to type M. Question 10 A star will spend most of its “shining” lifetime In the main-sequence stage, hydrogen fuses to helium. Pressure from light and heat pushing out balances gravitational pressure pushing inward.

ASTR 101-3, FALL