Q9.1 The graph shows the angular velocity and angular acceleration versus time for a rotating body. At which of the following times is the rotation speeding.

Slides:



Advertisements
Similar presentations
Angular Quantities Correspondence between linear and rotational quantities:
Advertisements

Classical Mechanics Review 3, Units 1-16
Review Problems From Chapter 10&11. 1) At t=0, a disk has an angular velocity of 360 rev/min, and constant angular acceleration of rad/s**2. How.
Angular Momentum The vector angular momentum of the point mass m about the point P is given by: The position vector of the mass m relative to the point.
© 2012 Pearson Education, Inc. The graph shows the angular velocity and angular acceleration versus time for a rotating body. At which of the following.
A thin uniform bar has a moment of inertia I about an axis perpendicular to it through its center. If both the mass and length of this bar were doubled,
Warm-up: Centripetal Acceleration Practice
Rotational Dynamics Lecturer: Professor Stephen T. Thornton
ConcepTest Clicker Questions College Physics, 7th Edition
Rotational Motion Chapter Opener. Caption: You too can experience rapid rotation—if your stomach can take the high angular velocity and centripetal acceleration.
Chapter 9 Rotational Dynamics.
L24-s1,8 Physics 114 – Lecture 24 §8.5 Rotational Dynamics Now the physics of rotation Using Newton’s 2 nd Law, with a = r α gives F = m a = m r α τ =
Chapter 9 Rotational Dynamics. 9.5 Rotational Work and Energy.
Physics 111: Lecture 19, Pg 1 Physics 111: Lecture 19 Today’s Agenda l Review l Many body dynamics l Weight and massive pulley l Rolling and sliding examples.
Rotational Motion.
Rotational Motion October 31, 2005 and November 2, 2005.
Copyright © 2012 Pearson Education Inc. Rotational Kinematics, Inertia Physics 7C lecture 11 Tuesday November 5, 8:00 AM – 9:20 AM Engineering Hall 1200.
Rigid body rotations inertia. Constant angular acceleration.
Chapter 10 Rotational Motion
Rotational Energy. Rigid Body  Real objects have mass at points other than the center of mass.  Each point in an object can be measured from an origin.
Halliday/Resnick/Walker Fundamentals of Physics
Rotational Inertia.
Classical Mechanics Review 4: Units 1-19
Copyright © 2014 John Wiley & Sons, Inc. All rights reserved.
Rotational Work and Kinetic Energy Dual Credit Physics Montwood High School R. Casao.
Physics. Session Rotational Mechanics - 5 Session Objectives.
Halliday/Resnick/Walker Fundamentals of Physics 8th edition
Chapter 8 Rotational Motion
Dynamics Questions Chris Parkes. Motion s-t graph I drop a ball out of the window of my office (4 th floor) – which graph best represents the distance.
Copyright © 2012 Pearson Education Inc. PowerPoint ® Lectures for University Physics, Thirteenth Edition – Hugh D. Young and Roger A. Freedman Lectures.
Lecture 18 Rotational Motion
Copyright © 2012 Pearson Education Inc. PowerPoint ® Lectures for University Physics, Thirteenth Edition – Hugh D. Young and Roger A. Freedman Chapter.
ROTATIONAL MOTION AND EQUILIBRIUM
Chapter 10 - Rotation Definitions: –Angular Displacement –Angular Speed and Velocity –Angular Acceleration –Relation to linear quantities Rolling Motion.
Torque Chap 8 Units: m N 2.
AP Rotational Dynamics Lessons 91 and 94.  Matter tends to resist changes in motion ◦ Resistance to a change in velocity is inertia ◦ Resistance to a.
T071 Q17. A uniform ball, of mass M = kg and radius R = 0
Chapter 8 Rotational Motion.
Physics 111 Practice Problem Statements 09 Rotation, Moment of Inertia SJ 8th Ed.: Chap 10.1 – 10.5 Contents 11-4, 11-7, 11-8, 11-10, 11-17*, 11-22, 11-24,
Copyright © 2009 Pearson Education, Inc. Lecture 1 Rotational Motion.
Q9.1 The graph shows the angular velocity and angular acceleration versus time for a rotating body. At which of the following times is the rotation speeding.
Rotation of Rigid Bodies
Equations for Projectile Motion
今日課程內容 CH10 轉動 角位移、角速度、角加速度 等角加速度運動 力矩 轉動牛頓第二運動定律 轉動動能 轉動慣量.
Chapter 8 Rotational Motion.
Two-Dimensional Rotational Kinematics 8.01 W09D1 Young and Freedman: 1.10 (Vector Products) , 10.5.
Work, Power and Energy in Rotational Motion AP Physics C Mrs. Coyle.
10/10/2012PHY 113 A Fall Lecture 171 PHY 113 A General Physics I 9-9:50 AM MWF Olin 101 Plan for Lecture 17: Chapter 10 – rotational motion 1.Angular.
Rotational kinematics and energetics
Chapter 9: Rotational Motion
Ch. 9 Rotational Kinematics
Cutnell/Johnson Physics 8th edition Reading Quiz Questions
10-5 Rotational Dynamics; Torque and Rotational Inertia
-Angular and Linear Quantities -Rotational Kinetic Energy -Moment of Inertia AP Physics C Mrs. Coyle.
Copyright © 2012 Pearson Education Inc. PowerPoint ® Lectures for University Physics, Thirteenth Edition – Hugh D. Young and Roger A. Freedman Lectures.
ConcepTest 8.1aBonnie and Klyde I Bonnie Klyde Bonnie sits on the outer rim of a merry-go-round, and Klyde sits midway between the center and the rim.
Chapter 8 Rotational Kinematics – Angular displacement, velocity, acceleration © 2014 Pearson Education, Inc. Info in red font is not necessary to copy.
Copyright © 2010 Pearson Education, Inc. Lecture Outline Chapter 10 Physics, 4 th Edition James S. Walker.
Chapter 9: Rotational Motion
Rotational Motion & Equilibrium Rigid Bodies Rotational Dynamics
Physics 3 – Jan 5, 2017 P3 Challenge –
Classical Mechanics Review 4: Units 1-22
Chapter 8 Rotational Motion
Figure 10.16  A particle rotating in a circle under the influence of a tangential force Ft. A force Fr in the radial direction also must be present to.
Rotational Motion.
Rotational Kinetic Energy Ekr (J)
Rotational Kinetic Energy
Physics 3 – Aug 31, 2017 P3 Challenge –
Rotational Kinetic Energy
Think of it as rotational _________________.
Presentation transcript:

Q9.1 The graph shows the angular velocity and angular acceleration versus time for a rotating body. At which of the following times is the rotation speeding up at the greatest rate? A. t = 1 s B. t = 2 s C. t = 3 s D. t = 4 s E. t = 5 s Answer: E

A9.1 The graph shows the angular velocity and angular acceleration versus time for a rotating body. At which of the following times is the rotation speeding up at the greatest rate? A. t = 1 s B. t = 2 s C. t = 3 s D. t = 4 s E. t = 5 s

At t = 0.40 s, what is the angle between the line PQ and the +x-axis? A DVD is initially at rest so that the line PQ on the disc’s surface is along the +x-axis. The disc begins to turn with a constant az = 5.0 rad/s2. At t = 0.40 s, what is the angle between the line PQ and the +x-axis? A. 0.40 rad B. 0.80 rad C. 1.0 rad D. 2.0 rad Answer: A

A9.2 A DVD is initially at rest so that the line PQ on the disc’s surface is along the +x-axis. The disc begins to turn with a constant az = 5.0 rad/s2. At t = 0.40 s, what is the angle between the line PQ and the +x-axis? A. 0.40 rad B. 0.80 rad C. 1.0 rad D. 2.0 rad

A. P and Q have the same arad and atan. A DVD is rotating with an ever-increasing speed. How do the centripetal acceleration arad and tangential acceleration atan compare at points P and Q? A. P and Q have the same arad and atan. B. Q has a greater arad and a greater atan than P. C. Q has a smaller arad and a greater atan than P. D. P and Q have the same arad, but Q has a greater atan than P. Answer: B

A9.3 A DVD is rotating with an ever-increasing speed. How do the centripetal acceleration arad and tangential acceleration atan compare at points P and Q? A. P and Q have the same arad and atan. B. Q has a greater arad and a greater atan than P. C. Q has a smaller arad and a greater atan than P. D. P and Q have the same arad, but Q has a greater atan than P.

A. a faster linear speed and a faster angular speed. Q9.4 Compared to a gear tooth on the rear sprocket (on the left, of small radius) of a bicycle, a gear tooth on the front sprocket (on the right, of large radius) has A. a faster linear speed and a faster angular speed. B. the same linear speed and a faster angular speed. C. a slower linear speed and the same angular speed. D. the same linear speed and a slower angular speed. E. none of the above Answer: D

A9.4 Compared to a gear tooth on the rear sprocket (on the left, of small radius) of a bicycle, a gear tooth on the front sprocket (on the right, of large radius) has A. a faster linear speed and a faster angular speed. B. the same linear speed and a faster angular speed. C. a slower linear speed and the same angular speed. D. the same linear speed and a slower angular speed. E. none of the above

A. 4 times its initial value. B. twice its initial value. Q9.5 You want to double the radius of a rotating solid sphere while keeping its kinetic energy constant. (The mass does not change.) To do this, the final angular velocity of the sphere must be A. 4 times its initial value. B. twice its initial value. C. the same as its initial value. D. 1/2 of its initial value. E. 1/4 of its initial value. Answer: D

A9.5 You want to double the radius of a rotating solid sphere while keeping its kinetic energy constant. (The mass does not change.) To do this, the final angular velocity of the sphere must be A. 4 times its initial value. B. twice its initial value. C. the same as its initial value. D. 1/2 of its initial value. E. 1/4 of its initial value.

A. thin-walled hollow cylinder B. solid sphere Q9.6 The three objects shown here all have the same mass M and radius R. Each object is rotating about its axis of symmetry (shown in blue). All three objects have the same rotational kinetic energy. Which one is rotating fastest? A. thin-walled hollow cylinder B. solid sphere C. thin-walled hollow sphere D. two or more of these are tied for fastest Answer: B

A9.6 The three objects shown here all have the same mass M and radius R. Each object is rotating about its axis of symmetry (shown in blue). All three objects have the same rotational kinetic energy. Which one is rotating fastest? A. thin-walled hollow cylinder B. solid sphere C. thin-walled hollow sphere D. two or more of these are tied for fastest

Q9.7 A thin, very light wire is wrapped around a drum that is free to rotate. The free end of the wire is attached to a ball of mass m. The drum has the same mass m. Its radius is R and its moment of inertia is I = (1/2)mR2. As the ball falls, the drum spins. At an instant that the ball has translational kinetic energy K, the drum has rotational kinetic energy Answer: C A. K. B. 2K. C. K/2. D. none of these

A9.7 A thin, very light wire is wrapped around a drum that is free to rotate. The free end of the wire is attached to a ball of mass m. The drum has the same mass m. Its radius is R and its moment of inertia is I = (1/2)mR2. As the ball falls, the drum spins. At an instant that the ball has translational kinetic energy K, the drum has rotational kinetic energy A. K. B. 2K. C. K/2. D. none of these