Lecture 15(Ch16): Clustering

Slides:



Advertisements
Similar presentations
Introduction to Information Retrieval Introduction to Information Retrieval Lecture 7: Scoring and results assembly.
Advertisements

Text Clustering David Kauchak cs160 Fall 2009 adapted from:
CS 478 – Tools for Machine Learning and Data Mining Clustering: Distance-based Approaches.
Information Retrieval Lecture 7 Introduction to Information Retrieval (Manning et al. 2007) Chapter 17 For the MSc Computer Science Programme Dell Zhang.
Albert Gatt Corpora and Statistical Methods Lecture 13.
Clustering Basic Concepts and Algorithms
PARTITIONAL CLUSTERING
©2012 Paula Matuszek CSC 9010: Text Mining Applications: Document Clustering l Dr. Paula Matuszek l
Clustering Paolo Ferragina Dipartimento di Informatica Università di Pisa This is a mix of slides taken from several presentations, plus my touch !
CSCI 5417 Information Retrieval Systems Jim Martin Lecture 16 10/18/2011.
Unsupervised learning
Introduction to Information Retrieval Introduction to Information Retrieval Hinrich Schütze and Christina Lioma Lecture 16: Flat Clustering 1.
CS347 Lecture 8 May 7, 2001 ©Prabhakar Raghavan. Today’s topic Clustering documents.
Clustering… in General In vector space, clusters are vectors found within  of a cluster vector, with different techniques for determining the cluster.
© University of Minnesota Data Mining for the Discovery of Ocean Climate Indices 1 CSci 8980: Data Mining (Fall 2002) Vipin Kumar Army High Performance.
CS728 Web Clustering II Lecture 14. K-Means Assumes documents are real-valued vectors. Clusters based on centroids (aka the center of gravity or mean)
1 Text Clustering. 2 Clustering Partition unlabeled examples into disjoint subsets of clusters, such that: –Examples within a cluster are very similar.
Introduction to Information Retrieval Introduction to Information Retrieval Hinrich Schütze and Christina Lioma Lecture 16: Flat Clustering 1.
Lecture 13: Clustering (continued) May 12, 2010
CS276A Text Retrieval and Mining Lecture 13 [Borrows slides from Ray Mooney and Soumen Chakrabarti]
Flat Clustering Adapted from Slides by
Unsupervised Learning: Clustering 1 Lecture 16: Clustering Web Search and Mining.
Clustering Unsupervised learning Generating “classes”
CSCI 5417 Information Retrieval Systems Jim Martin Lecture 6 9/8/2011.
CSC 4510 – Machine Learning Dr. Mary-Angela Papalaskari Department of Computing Sciences Villanova University Course website:
Unsupervised Learning. CS583, Bing Liu, UIC 2 Supervised learning vs. unsupervised learning Supervised learning: discover patterns in the data that relate.
Text Clustering.
Clustering Supervised vs. Unsupervised Learning Examples of clustering in Web IR Characteristics of clustering Clustering algorithms Cluster Labeling 1.
Introduction to Information Retrieval Introduction to Information Retrieval CS276: Information Retrieval and Web Search Pandu Nayak and Prabhakar Raghavan.
ITCS 6265 Information Retrieval & Web Mining Lecture 15 Clustering.
Basic Machine Learning: Clustering CS 315 – Web Search and Data Mining 1.
1 Motivation Web query is usually two or three words long. –Prone to ambiguity –Example “keyboard” –Input device of computer –Musical instruments How can.
Introduction to Information Retrieval Introduction to Information Retrieval Modified from Stanford CS276 slides Chap. 16: Clustering.
Clustering Paolo Ferragina Dipartimento di Informatica Università di Pisa This is a mix of slides taken from several presentations, plus my touch !
Information Retrieval Lecture 6 Introduction to Information Retrieval (Manning et al. 2007) Chapter 16 For the MSc Computer Science Programme Dell Zhang.
Hinrich Schütze and Christina Lioma Lecture 16: Flat Clustering
Introduction to Information Retrieval Introduction to Information Retrieval Hinrich Schütze and Christina Lioma Lecture 16: Flat Clustering 1.
Clustering I. 2 The Task Input: Collection of instances –No special class label attribute! Output: Clusters (Groups) of instances where members of a cluster.
Clustering Clustering is a technique for finding similarity groups in data, called clusters. I.e., it groups data instances that are similar to (near)
Information Retrieval and Organisation Chapter 16 Flat Clustering Dell Zhang Birkbeck, University of London.
Clustering. What is Clustering? Clustering: the process of grouping a set of objects into classes of similar objects –Documents within a cluster should.
V. Clustering 인공지능 연구실 이승희 Text: Text mining Page:82-93.
CSCI 5417 Information Retrieval Systems Jim Martin Lecture 15 10/13/2011.
Clustering (Modified from Stanford CS276 Slides - Lecture 17 Clustering)
Today’s Topic: Clustering  Document clustering Motivations Document representations Success criteria  Clustering algorithms Partitional Hierarchical.
Compiled By: Raj Gaurang Tiwari Assistant Professor SRMGPC, Lucknow Unsupervised Learning.
Lecture 12: Clustering May 5, Clustering (Ch 16 and 17)  Document clustering  Motivations  Document representations  Success criteria  Clustering.
Basic Machine Learning: Clustering CS 315 – Web Search and Data Mining 1.
Clustering Slides adapted from Chris Manning, Prabhakar Raghavan, and Hinrich Schütze (
1 Machine Learning Lecture 9: Clustering Moshe Koppel Slides adapted from Raymond J. Mooney.
Introduction to Information Retrieval Introduction to Information Retrieval Clustering Chris Manning, Pandu Nayak, and Prabhakar Raghavan.
Introduction to Information Retrieval Introduction to Information Retrieval CS276: Information Retrieval and Web Search Christopher Manning and Prabhakar.
Introduction to Information Retrieval Introduction to Information Retrieval CS276: Information Retrieval and Web Search Christopher Manning and Prabhakar.
Data Mining and Text Mining. The Standard Data Mining process.
Prof. Paolo Ferragina, Algoritmi per "Information Retrieval"
Sampath Jayarathna Cal Poly Pomona
Semi-Supervised Clustering
Machine Learning Clustering: K-means Supervised Learning
Machine Learning Lecture 9: Clustering
Data Mining K-means Algorithm
Information Organization: Clustering
本投影片修改自Introduction to Information Retrieval一書之投影片 Ch 16 & 17
CS276B Text Information Retrieval, Mining, and Exploitation
Machine Learning on Data Lecture 9b- Clustering
Text Categorization Berlin Chen 2003 Reference:
Clustering Techniques
INFORMATION RETRIEVAL TECHNIQUES BY DR. ADNAN ABID
Introduction to Machine learning
Presentation transcript:

Lecture 15(Ch16): Clustering

Today’s Topic: Clustering Document clustering Motivations Document representations Success criteria

What is clustering? The commonest form of unsupervised learning Ch. 16 What is clustering? Clustering: the process of grouping a set of objects into classes of similar objects Documents within a cluster should be similar. Documents from different clusters should be dissimilar. The commonest form of unsupervised learning Unsupervised learning = learning from raw data, as opposed to supervised data where a classification of examples is given A common and important task that finds many applications in IR and other places

A data set with clear cluster structure Ch. 16 A data set with clear cluster structure How would you design an algorithm for finding the three clusters in this case?

Applications of clustering in IR Sec. 16.1 Applications of clustering in IR Whole corpus analysis/navigation Better user interface: search without typing For improving recall in search applications Better search results (like pseudo RF) For better navigation of search results Effective “user recall” will be higher For speeding up vector space retrieval Cluster-based retrieval gives faster search

Yahoo! Hierarchy isn’t clustering but is the kind of output you want from clustering www.yahoo.com/Science … (30) agriculture biology physics CS space ... ... ... ... ... dairy botany cell AI courses crops craft magnetism agronomy HCI missions forestry evolution Final data set: Yahoo Science hierarchy, consisting of text of web pages pointed to by Yahoo, gathered summer of 1997. 264 classes, only sample shown here. relativity

Google News: automatic clustering gives an effective news presentation metaphor

Scatter/Gather: Cutting, Karger, and Pedersen Sec. 16.1 Scatter/Gather: Cutting, Karger, and Pedersen

For visualizing a document collection and its themes Wise et al, “Visualizing the non-visual” PNNL ThemeScapes, Cartia [Mountain height = cluster size]

For improving search recall Sec. 16.1 For improving search recall Cluster hypothesis - Documents in the same cluster behave similarly with respect to relevance to information needs Therefore, to improve search recall: Cluster docs in corpus a priori When a query matches a doc D, also return other docs in the cluster containing D Hope if we do this: The query “car” will also return docs containing automobile Because clustering grouped together docs containing car with those containing automobile. Why might this happen?

For better navigation of search results Sec. 16.1 For better navigation of search results For grouping search results thematically clusty.com / Vivisimo

Issues for clustering Representation for clustering How many clusters? Sec. 16.2 Issues for clustering Representation for clustering Document representation Vector space? Normalization? Centroids aren’t length normalized Need a notion of similarity/distance How many clusters? Fixed a priori? Completely data driven? Avoid “trivial” clusters - too large or small If a cluster's too large, then for navigation purposes you've wasted an extra user click without whittling down the set of documents much.

Notion of similarity/distance Ideal: semantic similarity. Practical: term-statistical similarity We will use cosine similarity. Docs as vectors. For many algorithms, easier to think in terms of a distance (rather than similarity) between docs. We will mostly speak of Euclidean distance But real implementations use cosine similarity

Clustering Algorithms Flat algorithms Usually start with a random (partial) partitioning Refine it iteratively K means clustering (Model based clustering) Hierarchical algorithms Bottom-up, agglomerative (Top-down, divisive)

Hard vs. soft clustering Hard clustering: Each document belongs to exactly one cluster More common and easier to do Soft clustering: A document can belong to more than one cluster. Makes more sense for applications like creating browsable hierarchies You may want to put a pair of sneakers in two clusters: (i) sports apparel and (ii) shoes You can only do that with a soft clustering approach. We won’t do soft clustering today. See IIR 16.5, 18

Partitioning Algorithms Partitioning method: Construct a partition of n documents into a set of K clusters Given: a set of documents and the number K Find: a partition of K clusters that optimizes the chosen partitioning criterion Globally optimal Intractable for many objective functions Ergo, exhaustively enumerate all partitions Effective heuristic methods: K-means and K-medoids algorithms

K-Means Assumes documents are real-valued vectors. Sec. 16.4 K-Means Assumes documents are real-valued vectors. Clusters based on centroids (aka the center of gravity or mean) of points in a cluster, c: Reassignment of instances to clusters is based on distance to the current cluster centroids. (Or one can equivalently phrase it in terms of similarities)

K-Means Algorithm Select K random docs {s1, s2,… sK} as seeds. Sec. 16.4 K-Means Algorithm Select K random docs {s1, s2,… sK} as seeds. Until clustering converges (or other stopping criterion): For each doc di: Assign di to the cluster cj such that dist(xi, sj) is minimal. (Next, update the seeds to the centroid of each cluster) For each cluster cj sj = (cj)

K Means Example (K=2) Pick seeds Reassign clusters Compute centroids Sec. 16.4 K Means Example (K=2) Pick seeds Reassign clusters Compute centroids x Reassign clusters x Compute centroids Reassign clusters Converged!

Termination conditions Sec. 16.4 Termination conditions Several possibilities, e.g., A fixed number of iterations. Doc partition unchanged. Centroid positions don’t change. Does this mean that the docs in a cluster are unchanged?

Convergence Why should the K-means algorithm ever reach a fixed point? Sec. 16.4 Convergence Why should the K-means algorithm ever reach a fixed point? A state in which clusters don’t change. K-means is a special case of a general procedure known as the Expectation Maximization (EM) algorithm. EM is known to converge. Number of iterations could be large. But in practice usually isn’t

Convergence of K-Means Sec. 16.4 Convergence of K-Means Lower case! Define goodness measure of cluster k as sum of squared distances from cluster centroid: Gk = Σi (di – ck)2 (sum over all di in cluster k) G = Σk Gk Reassignment monotonically decreases G since each vector is assigned to the closest centroid.

Convergence of K-Means Sec. 16.4 Convergence of K-Means Recomputation monotonically decreases each Gk since (mk is number of members in cluster k): Σ (di – a)2 reaches minimum for: Σ –2(di – a) = 0 Σ di = Σ a mK a = Σ di a = (1/ mk) Σ di = ck K-means typically converges quickly

Sec. 16.4 Time Complexity Computing distance between two docs is O(M) where M is the dimensionality of the vectors. Reassigning clusters: O(KN) distance computations, or O(KNM). Computing centroids: Each doc gets added once to some centroid: O(NM). Assume these two steps are each done once for I iterations: O(IKNM).

Seed Choice Results can vary based on random seed selection. Sec. 16.4 Seed Choice Results can vary based on random seed selection. Some seeds can result in poor convergence rate, or convergence to sub-optimal clusterings. Select good seeds using a heuristic (e.g., doc least similar to any existing mean) Try out multiple starting points Initialize with the results of another method. Example showing sensitivity to seeds In the above, if you start with B and E as centroids you converge to {A,B,C} and {D,E,F} If you start with D and F you converge to {A,B,D,E} {C,F}

K-means issues, variations, etc. Sec. 16.4 K-means issues, variations, etc. Recomputing the centroid after every assignment (rather than after all points are re-assigned) can improve speed of convergence of K-means Assumes clusters are spherical in vector space Sensitive to coordinate changes, weighting etc. Disjoint and exhaustive Doesn’t have a notion of “outliers” by default But can add outlier filtering

How Many Clusters? Number of clusters K is given Partition n docs into predetermined number of clusters Finding the “right” number of clusters is part of the problem Given docs, partition into an “appropriate” number of subsets. E.g., for query results - ideal value of K not known up front - though UI may impose limits. Can usually take an algorithm for one flavor and convert to the other.

K not specified in advance Say, the results of a query. Solve an optimization problem: penalize having lots of clusters application dependent, e.g., compressed summary of search results list. Tradeoff between having more clusters (better focus within each cluster) and having too many clusters

K not specified in advance Given a clustering, define the Benefit for a doc to be the cosine similarity to its centroid Define the Total Benefit to be the sum of the individual doc Benefits. Why is there always a clustering of Total Benefit n?

Penalize lots of clusters For each cluster, we have a Cost C. Thus for a clustering with K clusters, the Total Cost is KC. Define the Value of a clustering to be = Total Benefit - Total Cost. Find the clustering of highest value, over all choices of K. Total benefit increases with increasing K. But can stop when it doesn’t increase by “much”. The Cost term enforces this.