Chronic Adaptations to Training

Slides:



Advertisements
Similar presentations
CHRONIC ADAPTATIONS TO TRAINING
Advertisements

Chapter 4 Acute responses to exercise
Cardiorespiratory Adaptations to Training
PHYSIOLOGICAL RESPONSES AND ADAPTATION TO EXERCISE
What is Oxygen Uptake? What is VO 2 Max? OXYGEN UPTAKE - VO 2 amount of oxygen consumed per unit of time (usually 1 minute) expressed as VO 2 mean value.
Cardiovascular and Respiratory Systems Working Together
Respiratory Adaptations to Long Term Training
Principle of Adaptation
CARDIOVASCULAR ENDURANCE
Effects of Exercise Responses to Exercise.. There Are Two Kinds of Response to Exercise  Immediate, short-term responses that last only for the duration.
Project 2 Topic 2 Chronic Adaptations to Training.
Physiological Adaptations in Response to Training
TRAINING ADAPTATIONS Lect. II.
Effects of exercise © 2006 Pearson Publishing Tel
Short and long term effects of exercise
Integration of Cardiovascular and Respiratory Function  Oxygen consumption is the amount of O 2 taken up and consumed by the body for metabolic processes.
VO2 MAX & TRAINING ADAPTATIONS
Oxygen Uptake and Performance
UNIT 1 - Information Short term exercising or playing sport causes changes to take place in the body. Some of these changes are visible, many are not.
THE CARDIOVASCULAR SYSTEM
Nieman DC. Exercise Testing and Prescription: A Health-Related Approach. 6/e. Copyright ©2007 McGraw-Hill Higher Education. All rights reserved. Chapter.
Exercise Physiology.
Long term effects of training.
YEAR 11 PE ACUTE RESPONSES TO PHYSICAL ACTIVITY.  ACUTE RESPONSES- Immediate, short-term responses to exercise that last only for the duration of the.
Benefits of Cardiovascular Fitness SkyView Physical Education Department.
The Effect of Exercise on the Cardiovascular System
As soon as you begin to exercise your muscle cells increase their demands for oxygen (O 2 ). As exercise continues there is also an increased need to remove.
TRAINING ADAPTATIONS Presented by Mohammad Kraizem.
Cardiorespiratory Adaptations to Training
KEY KNOWLEDGEKEY SKILLS  Long term (chronic) training adaptations occurring at the cardiovascular, respiratory and muscular systems.  Describe how long.
Chapter 11 Chronic training adaptations
Physiological effects of training The cardiovascular system.
Cardiac & Respiratory Dynamics. Vascular System Carry blood away from heart Arteries  Arterioles  Capillaries Carry blood to heart Capillaries  Venules.
Exercise and Performance Fitness testing 2 Jeri Graham Bridget Gallagher.
ACUTE RESPONSES TO EXERCISE. Acute Responses to Exercise are the immediate physiological responses to exercise.
CHRONIC ADAPTATIONS Physical Education, Unit 4 AoS 1.
Long term effects of training/exercise. HEART Larger, stronger heart chambers Stronger heart beat – more efficient circulation Lower resting heart rate.
VCE Physical Education - Unit 4
 Chronic training effects are achieved after a period of training, and once produced remains a feature of the body until training ceases. Detraining.
TRAINING ADAPTATIONS (CH11). Training principle of ADAPTATION ALSO REFERRED TO AS THE SAID PRINCIPLE ALSO REFERRED TO AS THE SAID PRINCIPLE S = Specific.
Adaptations to Exercise. Oxygen Delivery During Exercise Oxygen demand by muscles during exercise is 15-25x greater than at rest Increased delivery.
Acute Responses to Exercise Key Knowledge 2.1: Functions responsible for short term (acute) responses to physical activity in the cardiovascular, respiratory.
3.1.1 – The demands of performance – aerobic and anaerobic exercise Learning objectives To describe the difference between aerobic and anaerobic respiration.
M. Tupper HFHS What is Physiology? The study of living processes The study of living processes Understanding how various forms of life function.
KEY KNOWLEDGEKEY SKILLS  functions responsible for short term (acute) responses to physical activity in the cardiovascular, respiratory and muscular systems.
LONG TERM EFFECTS OF EXERCISE ON THE BODY SYSTEMS Physiology of Fitness Andrew Roberts.
KEY KNOWLEDGEKEY SKILLS  The functions responsible for short term (acute) responses to physical activity in the cardiovascular, respiratory and muscular.
The cardiovascular system and its response to exercise
Physiological Adaptions in response to training − In response to training the body makes adaptions or adjustments to the level of stress imposed on it.
Food is eaten and  converted to fuel/waste  fuel is transported in the blood and can be used direct from the blood (glucose, free fatty acids) or stored.
 Give out table to complete as we go through powerpoint. Notes book will help.
Adaptations to Aerobic and Anaerobic Training. Adaptations to Aerobic Training: Cardiorespiratory Endurance Cardiorespiratory endurance –Ability to sustain.
Physical responses and adaptations of human body to exercise Martin Jančík.
ACUTE RESPONSES TO PHYSICAL ACTIVITY YEAR 11 PE-Year 12 Content.
Starter The heart is a muscle and it’s own blood supply comes from the coronary arteries. A diet high in Low Density Lipoproteins LDL’s clogs up these.
Cardiovascular System
Physiological Adaptations in Response to Training
(1) Adaptations: the heart
CQ1 – How does training affect performance?
PHYSIOLOGICAL ADAPTATIONS IN RESPONSE TO TRAINING
Acute Responses to Exercise
IMMEDIATE PHYSIOLOGICAL RESPONSES TO TRAINING
Aerobic Training Module 4- Training.
Chapter 4: Acute Responses & o2 Uptake, Deficit & debt
The long-term training effects of exercise
Long-term effects of exercise
Physiology L3.
KEY KNOWLEDGE KEY SKILLS
PHED 1 Applied Physiology Responses to Exercise
Long Term Responses to Training
Presentation transcript:

Chronic Adaptations to Training

Assumed knowledge Detailed understanding of the respiratory and circulatory systems. A thorough understanding of energy systems and anaerobic versus aerobic training. Skeletal muscle structure and function

Chronic versus acute Chronic changes are actually adaptations that occur as a result of long term training. Chronic adaptations occur at both the cardio-respiratory system level and the muscle site. Acute changes are changes that occur as a result of one off sessions – that is each time you undertake exercise acute changes can occur at the muscle site and to the cardio-respiratory systems.

Chronic Training Adaptations When we discuss chronic adaptations to training we are asssuming that training has been occurring for a minimum of 6-8 weeks, training at least 3 sessions per week. Why is this important? What if the athlete was training less than this? Chronic adaptations can be seen either at rest, during submaximal work or during maximal work.

Chronic Adaptations vary depending on the following: Type and method of training – aerobic versus anaerobic. Frequency, duration and intensity of training. Individuals capacities – hereditary factors (your genetic make up)

Aerobic Training The minimum period for chronic adaptations to occur is 6 weeks. Adaptations from aerobic training can occur at the muscle site and in the cardio-respiratory systems.

Cardio respiratory adaptations from aerobic training Chronic cardio (heart) and respiratory (lungs) changes are easier to remember if you understand that the changes are occurring to improve the ability to carry oxygen around the body to the working muscles These changes are important and decrease your chance of developing heart disease / problems.

Chronic adaptations to Aerobic training Cardiac hypertrophy (increased ventricular volume) Increased capillarisation of the heart muscle Increased stroke volume Lower resting heart rate Lower heart rate during sub max workloads Improved heart rate recovery rates

Chronic adaptations to Aerobic training Increased cardiac output at max. workloads Lower blood pressure Increased arterio-venous oxygen difference (a-VO2 diff) Increased blood volume and haemoglobin levels Increased capillarisation of skeletal muscle

Chronic adaptations to Aerobic training Changes to blood cholesterol, triglycerides, lipoprotein levels (L.D.L’s and H.D.L’s) Increased lung ventilation Increased max. oxygen uptake (VO2 max) Increased anaerobic threshold

Chronic adaptations to Aerobic training Cardio respiratory adaptations are best developed through the following methods: Continuous training Fartlek training Long interval training

Chronic adaptations to Aerobic training CARDIOVASCULAR ADAPTATIONS The easiest way to remember them all is categorize the adaptations into: Cardiovascular adaptations Respiratory adaptations Muscle adaptations When discussing cardiovascular changes we are talking specifically about the heart, blood vessels and blood.

Chronic adaptations to Aerobic training CARDIOVASCULAR ADAPTATIONS CARDIAC HYPERTROPHY Enlargement of the heart muscle itself. The heart chambers are enlarged, therefore increased ventricular volume – most important is LV size – why?

Chronic adaptations to Aerobic training CARDIOVASCULAR ADAPTATIONS INCREASED CAPILLARISATION OF THE HEART MUSCLE Cardiac hypertrophy also leads to an increase in the capillary density and blood flow to the heart muscle itself. The increased supply of blood and O2 allows the heart to beat more strongly and efficiently during both EXERCISE and REST. Also decreases chance of heart attack.

The Coronary arteries

Chronic adaptations to Aerobic training CARDIOVASCULAR ADAPTATIONS INCREASED STROKE VOLUME Stroke volume is the amount of blood pumped per beat. Through aerobic training SV increases at REST, during SUB MAX. workloads and MAX. workloads.

Chronic adaptations to Aerobic training CARDIOVASCULAR ADAPTATIONS LOWER RESTING HEART RATE Resting heart rate is very useful in determining aerobic fitness. Generally the lower the resting heart rate the greater the aerobic fitness level. Because the athlete has greater stroke volume the heart does not need to beat as often to pump the same amount of blood around the body Page 252 LIU – Q= SV x HR equations!

Chronic adaptations to Aerobic training CARDIOVASCULAR ADAPTATION LOWER HEART RATE DURING SUB MAX WORKLOADS Compared to untrained individuals, athletes have lower heart rates during sub max. workloads. Mainly due to increased SV. The heart works more efficiently

Chronic adaptations to Aerobic training CARDIOVASCULAR ADAPTATIONS IMPROVED HEART RATE RECOVERY The heart rate of an athlete will return to normal (pre exercise levels) quicker than an untrained person.

Chronic adaptations to Aerobic training CARDIOVASCULAR ADAPTATIONS INCREASED CARDIAC OUTPUT (Q) AT MAXIMUM WORKLOADS Cardiac Output (Q) is the amount of blood pumped by the heart per minute Q remains unchanged at rest and even during sub max. work regardless of how hard you train. During max. exercise Q may increase up to 30 litres per minute for highly trained athletes

Chronic adaptations to Aerobic training CARDIOVASCULAR ADAPTATIONS Q = SV x HR Look at Page 252 LIU again for equations!

Chronic adaptations to Aerobic training CARDIOVASCULAR ADAPTATIONS LOWER BLOOD PRESSURE Both systolic and diastolic blood pressure levels may decrease during REST and EXERCISE. This helps by reducing resistance to blood flow and reduces strain on the heart.

Chronic adaptations to Aerobic training CARDIOVASCULAR ADAPTATIONS INCREASED ARTERIO-VENOUS OXYGEN DIFFERENCE (a-VO2 diff) Due to increased myoglobin stores and an increase in size and number of mitochondria trained individuals are able to absorb more O2 from their blood. a-VO2 diff is increased during SUB MAX and MAX exercise. A bigger a-VO2 diff indicates greater uptake of o2 by the muscle

Chronic adaptations to Aerobic training CARDIOVASCULAR ADAPTATIONS INCREASED BLOOD VOLUME AND HAEMOGLOBIN LEVELS Aerobic training may lead to total blood volume increasing up to 25%, as a result RBC’s may increase in number and therefore haemoglobin content increases thus O2 carrying capacity increases also. INCREASED CAPILLARISATION OF SKELETAL MUSCLE Long term aerobic training leads to increased capillarisation of the muscle, therefore more blood supply therefore more O2 can be delivered to the muscle

Chronic adaptations to Aerobic training CARDIOVASCULAR ADAPTATIONS

Chronic adaptations to Aerobic training CARDIOVASCULAR ADAPTATIONS CHANGES TO BLOOD CHOLESTEROL, TRIGLYCERIDES, LOW AND HIGH DENSITY LIPOPROTEIN LEVELS Regular aerobic training may result in a decrease in blood cholesterol levels, triglycerides and LDL’s. These substances are important in fighting heart disease. Also HDL’s are thought to increase – these are the good lipoproteins and protect us against heart disease.

Chronic adaptations to Aerobic training RESPIRATORY ADAPTATIONS When talking about the respiratory system we are talking about the lungs, air passages and our breathing (ventilation).

Chronic adaptations to Aerobic training RESPIRATORY ADAPTATIONS Just as there are cardiovascular adaptations to AEROBIC training there are also respiratory adaptations. These include: Increased lung ventilation Increased oxygen uptake Increased anaerobic or lactate threshold

Chronic adaptations to Aerobic training RESPIRATORY ADAPTATIONS INCREASED LUNG VENTILATION Aerobic training results in a more efficient and improved lung ventilation. At REST and during SUB MAX. work ventilation may be decreased due to improved oxygen extraction (pulmonary diffusion), however during MAX. work ventilation is increased because of increased tidal volume and respiratory frequency.

Chronic adaptations to Aerobic training RESPIRATORY ADAPTATIONS

Chronic adaptations to Aerobic training RESPIRATORY ADAPTATIONS INCREASED MAXIMUM OXYGEN UPTAKE (VO2 MAX) VO2 max is improved as a result of aerobic training – it can be improved between 5 to 30 %. (LIU page 255) Improvements are a result of: -Increases in cardiac output -red blood cell numbers -a-VO2 diff - muscle capillarisation - greater oxygen extraction by muscles

Chronic adaptations to Aerobic training RESPIRATORY ADAPTATIONS VO2 MAX

Chronic adaptations to Aerobic training RESPIRATORY ADAPTATIONS INCREASED ANAEROBIC OR LACTATE THRESHOLD As a result of improved O2 delivery & utilisation a higher lactate threshold (the point where O2 supply cannot keep up with O2 demand) is developed. Much higher exercise intensities can therefore be reached and LA and H+ ion accumulation is delayed. The athlete can work harder for longer

Chronic adaptations to Aerobic training RESPIRATORY ADAPTATIONS WORDS to KNOW Arterio-venous oxygen difference Pulmonary diffusion Lung ventilation Tidal volume Respiratory frequency VO2 max Lactate threshold

Chronic adaptations to Aerobic training WITHIN THE MUSCLE TISSUE Chronic AEROBIC training adaptations within muscle tissue are best produced through: Continuous training High repetition resistance training

Chronic adaptations to Aerobic training WITHIN THE MUSCLE TISSUE The following tissue changes occur: (fig 8.9 Page 259 LIU) Increased O2 utilisation increased size and number of mitochondria Increased myoglobin stores Increased muscular fuel stores Increased oxidation of glucose and fats Decreased utilisation of the anaerobic glycolysis (LA) system Muscle fibre type adaptations

Chronic adaptations to Aerobic training WITHIN THE MUSCLE TISSUE