Advanced Implantation Detector Array (AIDA): Update & Issues Tom Davinson School of Physics The University of Edinburgh presented by Tom Davinson on behalf.

Slides:



Advertisements
Similar presentations
Applications of Nuclear Physics Applications of Nuclear Physics (Instrumentation) Dr Andy Boston Frontiers of gamma-ray spectroscopy.
Advertisements

DIAMANT Electronics Upgrade at ATOMKI Ferenc Nagy ATOMKI, HUNGARY.
10-Nov-2005US ATLAS Tracking Upgrade Santa Cruz 1.
Advanced Implantation Detector Array (AIDA): Update & Issues Tom Davinson School of Physics & Astronomy The University of Edinburgh presented by Tom Davinson.
Technical Solutions for High Vacuum Compatible FEE for the EXL Recoil Detector Vacuum operating pressure? bakeout temperature? what’s in the vacuum system,
Advanced Implantation Detector Array (AIDA): Update & Issues Tom Davinson School of Physics The University of Edinburgh presented by Tom Davinson on behalf.
Decay Spectroscopy at FAIR Using the Advanced Implantation Detector Array (AIDA) presented by Tom Davinson on behalf of the AIDA collaboration (Edinburgh.
RIBF P. Coleman-Smith, T. Davinson, A. Estrade, C. Griffins, L. Harkness-Brennan, G. Lorusso, K. Matsui, P. Morrall, S. Nishimura, V.
Decay Spectroscopy at FAIR Using the Advanced Implantation Detector Array (AIDA) presented by Tom Davinson on behalf of the AIDA collaboration Tom Davinson.
Decay Spectroscopy at FAIR Using the Advanced Implantation Detector Array (AIDA) presented by Tom Davinson on behalf of the AIDA collaboration (Edinburgh.
AIDA Update presented by Ian Lazarus on behalf of the AIDA collaboration (Edinburgh – Liverpool – STFC DL & RAL) Tom Davinson School of Physics & Astronomy.
Advanced Implantation Detector Array (AIDA): Update & Issues presented by Tom Davinson on behalf of the DESPEC-DSSD/AIDA collaboration Tom Davinson School.
LYCCA: Lund - York - Cologne - CAlorimeter Status report L U N D U N I V E R S I T YU N I V E R S I T Y Nuclear Structure Group.
D S Judson UNTF Forum Salford. Outline The Compton imaging process The PORGAMRAYS project What is it? How does it work? Detector description Spectroscopic.
Detector Characterisation Group
Advanced GAmma Tracking Array
Ian Bailey University of Liverpool / Cockcroft Institute Target Design and Photon Collimator Overview EUROTeV: WP4 (polarised positron source) PTCD task.
High granularity to reduce the effect of the “prompt flash” radiation Polarization sensitivity Imaging capabilities for background suppression DESPEC (DEcay.
EXL/R3B Calorimeters- Readout from ASIC to DAQ Ian Lazarus STFC Daresbury Laboratory.
ASICs for HiSpec and DeSpec Ian Lazarus NPG. Hispec and Despec.
AIDA Update presented by Tom Davinson on behalf of the AIDA collaboration (Edinburgh – Liverpool – STFC DL & RAL) Tom Davinson School of Physics & Astronomy.
Status of the External Solenoidal Spectrometer for the TSR Robert Page Why an external spectrometer? Solenoidal spectrometer Baseline design parameters.
LCWS2002 R. Frey1 Silicon/Tungsten ECal for the SD Detector M. Breidenbach, D. Freytag, G. Haller, M. Huffer, J.J Russell Stanford Linear Accelerator Center.
Decay Spectroscopy at FAIR with AIDA presented by Tom Davinson on behalf of the AIDA collaboration (Edinburgh – Liverpool – STFC DL & RAL) Tom Davinson.
Patrick Coleman-Smith CCLRC Daresbury 1 AGATA Digitiser Summary February 2005 Patrick J. Coleman-Smith For the Digitiser Technical Group  I.Lazarus Daresbury.
Advanced Implantation Detector Array (AIDA): Project Summary & Status Tom Davinson School of Physics & Astronomy The University of Edinburgh presented.
M. Labiche - INTAG workshop GSI May Se - D prototype for the focal plane of the PRISMA spectrometer (Task4) Digitisers for SAGE & LISA (task1)
Tom Tom Davinson School of Physics DESPEC DSSD Working Group Status & Open Issues.
PWO/APD/CSP Development at Hiroshima U. Hiroshima ALICE-PHOS Group (T.Sugitate, K.Shigaki, et al.) 17 August, 2004, at CERN.
AIDA FEE64 development report August 2010 Progress after Texas CAD work Manufacturing 25th August
VC Feb 2010Slide 1 EMR Construction Status o General Design o Electronics o Cosmics test Jean-Sebastien Graulich, Geneva.
1 ALICE T0 detector W.H.Trzaska (on behalf of T0 Group) LHCC Comprehensive Review, March 2003.
22nd February 1999Ian Lazarus NPG, CLRC1 TDR for data processing 22nd February 1999 Ian Lazarus Nuclear Physics Group CLRC, Daresbury Lab.
27 th September 2007AIDA design meeting. 27 th September 2007AIDA design meeting.
11th March 2008AIDA FEE Report1 AIDA Front end electronics Report February 2008.
21-Aug-06DoE Site Review / Harvard(1) Front End Electronics for the NOvA Neutrino Detector John Oliver Long baseline neutrino experiment Fermilab (Chicago)
Proton emission from deformed rare earth nuclei: A possible AIDA physics campaign Paul Sapple PRESPEC Decay Physics Workshop Brighton 12 January 2011.
FEE Electronics progress PCB layout progress VHDL progress in TBU Prototype fixtures FEE64 commissioning A few of the remaining tasks 16th July 2009.
HBD FEE test result summary + production schedule 16mv test pulse result –5X attenuator + 20:1 resistor divider at input (to reduce the noise on the test.
1 FoCal Status of Silicon Pad detector Array: Design and Tests 1.Review of results from last test beam 2.Plan for the test beam for March 2015.
DESPEC A Algora IFIC (Valencia) for the Ge array working group.
07-Jan-2010 Jornadas LIP 2010, Braga JC. Da SILVA Electronics systems for the ClearPEM-Sonic scanner José C. DA SILVA, LIP-Lisbon Tagus LIP Group * *J.C.Silva,
Development of a Segmented Planar Germanium Imaging Detector
PSD upgrade: concept and plans - Why the PSD upgrade is necessary? - Concept and status of the PSD temperature control - Concept of the PSD analog part.
FAIR (Facility for Antiproton and Ion Research) (Darmstadt, Germany) low-energy cave MeV/u fragmentation/fission ~1GeV/u fragment separator 350m.
ASIC Activities for the PANDA GSI Peter Wieczorek.
Status of the PSD upgrade - Problems with PSD in Be runs - Modification of cooling system - New temperature control - Upgrade of HV control system - MAPD.
PSD upgrade: concept and plans - Why the PSD upgrade is necessary? - Concept of the PSD temperature stabilization and control - Upgrade of HV control system.
5 May 2006Paul Dauncey1 The ILC, CALICE and the ECAL Paul Dauncey Imperial College London.
Front end electronics and system design for the NUSTAR experiments at the FAIR facility Presented by Ian Lazarus on behalf of NUSTAR collaboration FEE.
PGRIS: Towards portable Compton Camera Imaging
Status of the Advanced Implantation Detector Array (AIDA) BRIKEN Collaboration Workshop Valencia, July 2015 Alfredo Estrade on behalf of the AIDA collaboration.
Picosecond timing of high energy heavy ions with semiconductor detectors Vladimir Eremin* O. Kiselev**, I Eremin*, N. Egorov***, E.Verbitskaya* * Physical-Technical.
AIDA: introduction Advanced Implantation Detector Array (AIDA) UK collaboration: University of Edinburgh, University of Liverpool, STFC Daresbury Laboratory.
Advanced Implantation Detector Array (AIDA): Update & Issues Tom Davinson School of Physics The University of Edinburgh presented by Tom Davinson on behalf.
29/05/09A. Salamon – TDAQ WG - CERN1 LKr calorimeter L0 trigger V. Bonaiuto, L. Cesaroni, A. Fucci, A. Salamon, G. Salina, F. Sargeni.
Update of Prototype AT-TPC May 6, 2010 Weekly meeting Daisuke Suzuki, NSCL.
M. Manghisoni, L. Ratti Università degli Studi di Pavia INFN Pavia
Calorimeter Mu2e Development electronics Front-end Review
PSD Front-End-Electronics A.Ivashkin, V.Marin (INR, Moscow)
FEE Electronics progress
SIGMA: a detector for γ-ray spectroscopy & imaging Dr Laura AGATA/GRETINA Collaboration Meeting
Status of n-XYTER read-out chain at GSI
Search for Proton Radioactivity in the Trans-lead and Sub-tin Regions
AIDA: introduction Advanced Implantation Detector Array (AIDA)
AIDA Commisioning Test
Advanced Implantation Detector Array (AIDA)
Advanced Implantation Detector Array (AIDA)
Advanced Implantation Detector Array (AIDA)
Advanced Implantation Detector Array (AIDA)
Presentation transcript:

Advanced Implantation Detector Array (AIDA): Update & Issues Tom Davinson School of Physics The University of Edinburgh presented by Tom Davinson on behalf of the AIDA collaboration (Edinburgh – Liverpool – STFC DL & RAL)

AIDA: Current Status DSSD request for tender prototypes available 2008/Q3 Prototype ASIC design meeting design specifications submission 2008/Q2 FEE design underway prototype available 2008/Q3 liquid cooling required (cf. AGATA digitiser module) Prototype testing fully instrumented 8cm x 8cm DSSD test experiments being considered for 2009

AIDA: Current Status Evaluating 10nF/100V capacitor arrays long duration 400V Analog Devices AD bit/50MSPS ADC FEE sampling ADC DSSD response high energy heavy-ions simulations Luigi Bardelli et al. Texas A&M - November 2008 MSL type W1(DS) MeV/u 32 Cl t r =100ns GSI (100MeV/u) - March 2008? higher energy, heavier ions predict t r > 400ns

Time Jitter Transient signal analysis currently underway (realistic comparator design) Preamplifier risetime ( C f =0.6pF ) t r =110ns LLD threshold 0.26% 20MeV FSR 20MeV signal jitter ~0.13ns rms ( I D =1nA ), ?ns rms ( I D =100nA ) 0.2MeV signal jitter ~2.7ns rms ( I D =1nA ), ~4.0ns rms ( I D =100nA )  events will normally trigger multiple strips ‘simultaneously’ S/N improves as n 1/2 Highlights importance of minimising detector – instrumentation separation reduces noise and risetime radiation damage mitigation detector cooling

Outstanding Issues: approaching the Rubicon Package size 10cm x 26cm x 4cm (10cm x 10cm x 4cm) Mechanical design concepts 10cm x 26cmAIDA/ToF/Ge 10cm x 26cm??AIDA/4  Neutron Detector 10cm x 10cmAIDA/TAS … others? Review ASIC Project Specification DESPEC project requirements satisfied?

AIDA/ToF/Ge

AIDA/4  Neutron (NERO)

AIDA/TAS

Mechanical Design STFC Daresbury Laboratory professional 3D CAD/CAE engineering effort available Propose STFC Daresbury Laboratory should be responsible for mechanical design of RISING (cluster detectors) array supports and stand 4  Neutron detector stand/overall mechanical design of detector TAS stand/overall mechanical design of detector Fast Timing Array Collaboration remains responsible for detector specification STFC DL responsible for ensuring everything fits! Assuming UK NUSTAR bid to STFC successful funds available for stand construction, shipping and installation at GSI

AIDA Project Information Project web site Design Documents Project Technical Specification ASIC Project Specification v1.3 FEE Specification v0.5 The University of Edinburgh (lead RO) Phil Woods et al. The University of Liverpool Rob Page et al. STFC DL & RAL John Simpson et al. Project Manager: Tom Davinson

Acknowledgements This presentation includes material from other people Thanks to: Ian Lazarus & Patrick Coleman-Smith (STFC DL) Steve Thomas (STFC RAL) Dave Seddon & Rob Page (University of Liverpool) Berta Rubio (IFIC, CSIC University of Valencia)

AIDA: Resources & Tasks Cost Total announced value proposal £1.96M Support Manpower CCLRC DLc. 4.2 SYFEE PCB Design DAQ h/w & s/w CCLRC RALc. 3.5 SYASIC Design & simulation ASIC Production Edinburgh/Liverpoolc. 4.5 SYDSSD Design & production FEE PCB production Mechanical housing/support Platform grant support CCLRC DL/Edinburgh/Liverpool

Implantation – Decay Correlation DSSD strips identify where (x,y) and when (t 0 ) ions implanted Correlate with upstream detectors to identify implanted ion type Correlate with subsequent decay(s) at same position (x,y) at times t 1 (,t 2, …) Observation of a series of correlations enables determination of energy distribution and half-life of radioactive decay Require average time between implants at position (x,y) >> decay half-life depends on DSSD segmentation and implantation rate/profile Implantation profile  x ~  y ~ 2cm,  z ~ 1mm Implantation rate (8cm x 24cm) ~ 10kHz, ~ kHz per isotope (say) Longest half life to be observed ~ seconds Implies quasi-pixel dimensions ~ 0.5mm x 0.5mm

AIDA: General Arrangement

Representative ASIC Noise Analysis Minimise ballistic deficit shaping time >10x t r operate with  ~  s noise dominated by leakage current for I D > 10 nA Note – amongst other assumptions, we assume detector cooling

AIDA: Workplan

Diagram (above) of the FEE boards as they would fit in the vertical plane. The grey rectangles are heat conductive foam pads which conform to the component outlines and conduct the heat to the water cooled metalwork. The green is pcb, the orange is a Samtec 80 pin connector with a 2.3mm height and the dark brown is the ASIC. The connections to the detector will be on the mezzanine boards to the left and to the acquisition network computers and BUTIS on the right. These are not shown. Diagram ( alongside) shows the layout of a sub-board.