“Teach A Level Maths” Vol. 2: A2 Core Modules

Slides:



Advertisements
Similar presentations
“Teach A Level Maths” Vol. 2: A2 Core Modules
Advertisements

45: The graph of © Christine Crisp “Teach A Level Maths” Vol. 1: AS Core Modules.
“Teach A Level Maths” Vol. 2: A2 Core Modules
“Teach A Level Maths” Vol. 1: AS Core Modules
“Teach A Level Maths” Vol. 2: A2 Core Modules
“Teach A Level Maths” Vol. 2: A2 Core Modules
“Teach A Level Maths” Vol. 1: AS Core Modules
© Christine Crisp “Teach A Level Maths” Vol. 2: A2 Core Modules 22a: Integrating the Simple Functions.
42: Differentiating Parametric Equations © Christine Crisp “Teach A Level Maths” Vol. 2: A2 Core Modules.
© Christine Crisp “Teach A Level Maths” Vol. 2: A2 Core Modules 47: Solving Differential Equations.
6: Roots, Surds and Discriminant © Christine Crisp “Teach A Level Maths” Vol. 1: AS Core Modules.
49: A Practical Application of Log Laws © Christine Crisp “Teach A Level Maths” Vol. 1: AS Core Modules.
39: Trigonometric ratios of 3 special angles © Christine Crisp “Teach A Level Maths” Vol. 1: AS Core Modules.
41: Trig Equations © Christine Crisp “Teach A Level Maths” Vol. 1: AS Core Modules.
11: The Rule for Differentiation © Christine Crisp “Teach A Level Maths” Vol. 1: AS Core Modules.
19: Laws of Indices © Christine Crisp “Teach A Level Maths” Vol. 1: AS Core Modules.
1: Straight Lines and Gradients © Christine Crisp “Teach A Level Maths” Vol. 1: AS Core Modules.
9a: Differentiating Harder Products © Christine Crisp “Teach A Level Maths” Vol. 2: A2 Core Modules.
“Teach A Level Maths” Vol. 1: AS Core Modules
6: Discriminant © Christine Crisp “Teach A Level Maths” Vol. 1: AS Core Modules.
20: Stretches © Christine Crisp “Teach A Level Maths” Vol. 1: AS Core Modules.
15: The Gradient of the Tangent as a Limit © Christine Crisp “Teach A Level Maths” Vol. 1: AS Core Modules.
© Christine Crisp “Teach A Level Maths” Vol. 2: A2 Core Modules 6: Differentiating.
41: Trig Equations © Christine Crisp “Teach A Level Maths” Vol. 1: AS Core Modules.
24: Indefinite Integration © Christine Crisp “Teach A Level Maths” Vol. 1: AS Core Modules.
44: Stretches of the Trigonometric Functions © Christine Crisp “Teach A Level Maths” Vol. 1: AS Core Modules.
46: Indices and Laws of Logarithms
47: More Logarithms and Indices
“Teach A Level Maths” Vol. 1: AS Core Modules
9: Linear and Quadratic Inequalities © Christine Crisp “Teach A Level Maths” Vol. 1: AS Core Modules.
38: The graph of tan  © Christine Crisp “Teach A Level Maths” Vol. 1: AS Core Modules.
4: Translations and Completing the Square © Christine Crisp “Teach A Level Maths” Vol. 1: AS Core Modules.
13: Stationary Points © Christine Crisp “Teach A Level Maths” Vol. 1: AS Core Modules.
12: Tangents and Gradients © Christine Crisp “Teach A Level Maths” Vol. 1: AS Core Modules.
8: Simultaneous Equations and Intersections © Christine Crisp “Teach A Level Maths” Vol. 1: AS Core Modules.
“Teach A Level Maths” Vol. 1: AS Core Modules
“Teach A Level Maths” Vol. 1: AS Core Modules
“Teach A Level Maths” Vol. 1: AS Core Modules
“Teach A Level Maths” Vol. 1: AS Core Modules
“Teach A Level Maths” Vol. 1: AS Core Modules
“Teach A Level Maths” Vol. 1: AS Core Modules
“Teach A Level Maths” Vol. 1: AS Core Modules
“Teach A Level Maths” Vol. 1: AS Core Modules
“Teach A Level Maths” Vol. 1: AS Core Modules
“Teach A Level Maths” Vol. 1: AS Core Modules
“Teach A Level Maths” Vol. 1: AS Core Modules
“Teach A Level Maths” Vol. 2: A2 Core Modules
“Teach A Level Maths” Vol. 2: A2 Core Modules
“Teach A Level Maths” Vol. 1: AS Core Modules
“Teach A Level Maths” Vol. 2: A2 Core Modules
“Teach A Level Maths” Vol. 1: AS Core Modules
“Teach A Level Maths” Vol. 1: AS Core Modules
“Teach A Level Maths” Vol. 1: AS Core Modules
“Teach A Level Maths” Vol. 1: AS Core Modules
“Teach A Level Maths” Vol. 1: AS Core Modules
“Teach A Level Maths” Vol. 1: AS Core Modules
47: More Logarithms and Indices
“Teach A Level Maths” Vol. 2: A2 Core Modules
“Teach A Level Maths” Vol. 1: AS Core Modules
“Teach A Level Maths” Vol. 2: A2 Core Modules
“Teach A Level Maths” Vol. 1: AS Core Modules
“Teach A Level Maths” Vol. 1: AS Core Modules
“Teach A Level Maths” Vol. 2: A2 Core Modules
“Teach A Level Maths” Vol. 1: AS Core Modules
“Teach A Level Maths” Vol. 1: AS Core Modules
“Teach A Level Maths” Vol. 1: AS Core Modules
“Teach A Level Maths” Vol. 1: AS Core Modules
“Teach A Level Maths” Vol. 1: AS Core Modules
“Teach A Level Maths” Vol. 1: AS Core Modules
46: Indices and Laws of Logarithms
Presentation transcript:

“Teach A Level Maths” Vol. 2: A2 Core Modules 4: The function © Christine Crisp

Module C3 "Certain images and/or photos on this presentation are the copyrighted property of JupiterImages and are being used with permission under license. These images and/or photos may not be copied or downloaded without permission from JupiterImages"

We’ve already met the function e.g. growth Functions of this type, with a > 1, are called functions. Autograph demo

We will now investigate the gradient of e.g. Notice first that as x increases, y increases x x x x x x Autograph demo

We will now investigate the gradient of e.g. Notice first that as x increases, y increases . . . and the also increases x x x x x x x x x x x x The gradient function looks It the same as but . . .

We will now investigate the gradient of e.g. Notice first that as x increases, y increases . . . and the also increases e.g. x The gradient function x

Putting the 2 graphs on the same axes . . . What do you think will happen if we repeat the process for ? Well, goes up more steeply than so we get a similar result but the gradient function is above the curve.

It can be shown that So, The 1st gradient graph is under the original curve . . . and the 2nd is above the curve . . . suggesting that there is a value of a between 2 and 3 where the gradient of is equal to .

gradient of equals The value of a where the is an irrational number, written as e, where

gradient of equals The value of a where the is an irrational number, written as e, where Using a letter for an irrational number isn’t a new idea to you. You have used p ( the Greek p ) for

gradient of equals The value of a where the is an irrational number, written as e, where

More Indices and Logs We know that ( since an index is a log ) The function contains the index x, so x is a log. BUT the base of the log is e not 10, so Logs with a base e are called natural logs We write as ( n for natural ) so,

is a one-to-one function so has an inverse function. The Inverse of is a one-to-one function so has an inverse function. We can sketch the inverse by reflecting in y = x. Finding the equation of the inverse function is easy! Forwards x e it  = f(x) Backwards opposite of e it is ln it Autograph demo So, So N.B. The domain is .

SUMMARY is a growth function. (3 d.p.) At every point on , the gradient equals y: The inverse of is ( log with base e ) is defined for x > 0 only

Can you suggest equations for the unlabelled graphs below? HINT: Both graphs are stretches of .

This . . . is a stretch with scale factor 2 parallel to the y-axis. The equation is

is a stretch with scale factor parallel to the x-axis. This . . . The equation is

The following slides contain repeats of information on earlier slides, shown without colour, so that they can be printed and photocopied. For most purposes the slides can be printed as “Handouts” with up to 6 slides per sheet.

More Indices and Logs The function contains the index x, so x is a log. BUT the base of the log is e not 10, so We know that ( since an index is a log ) We write as ( n for natural ) so, Logs with a base e are called natural logs

SUMMARY is a growth function. (3 d.p.) At every point on , the gradient equals y: The inverse of is ( log with base e ) is defined for x > 0 only