DNA as Biological Information Rasmus Wernersson Henrik Nielsen.

Slides:



Advertisements
Similar presentations
BioEd Online The Molecular Basis of Heredity: Structures and Functions of Nucleic Acids by Raye L. Alford, PhD Baylor College of Medicine DNA Model by.
Advertisements

UTACCEL 2010 Adventures in Biotechnology Graham Cromar.
Biologisk information Med fokus på DNA. Læringsmål / learning objectives Læringsmål –Hvad er biologisk information –Informations flow –Teknikken bag DNA.
Introduktion til Bioinformatik Hold 01 Oktober 2010.
It og Sundhed Nov Jan. Thomas Nordahl Petersen, Associate Professor Center for Biological Sequence Analysis, DTU Normal
It og Sundhed Thomas Nordahl Petersen, Associate Professor Center for Biological Sequence Analysis, DTU Building 208, room 021
The Past, Present, and Future of DNA Sequencing
Disease-causing bacteria (smooth colonies) Harmless bacteria (rough colonies) Heat-killed, disease- causing bacteria (smooth colonies) Control (no growth)
DNA "The Blueprint of Life".
Updated February 2006 Created by C. Ippolito April 2005 Chapter 12 DNA and RNA 12-1 DNA pp Chromosomes and DNA Replication pp
© Wiley Publishing All Rights Reserved. Using Nucleotide Sequence Databases.
It og Sundhed Nov Jan. Thomas Nordahl Petersen, Associate Professor Center for Biological Sequence Analysis, DTU
DNA as Biological Information Rasmus Wenersson. Overview Learning objectives –About Biological Information –A note about DNA sequencing techniques and.
Creating NCBI The late Senator Claude Pepper recognized the importance of computerized information processing methods for the conduct of biomedical research.
Nucleic Acids & Protein Synthesis
Bioinformatics What is bioinformatics? Why bioinformatics? The major molecular biology facts Brief history of bioinformatics Typical problems of bioinformatics:
Protein databases Morten Nielsen. Background- Nucleotide databases GenBank, National Center for Biotechnology Information.
Archives and Information Retrieval
What is bioinformatics? Finding patterns in molecular biological data Implies: managing molecular biological data identifying correlations in molecular.
DNA as Biological Information Rasmus Wernersson Henrik Nielsen.
Protein databases Henrik Nielsen. Background- Nucleotide databases GenBank, National Center for Biotechnology Information.
DNA and RNA. I. DNA Structure Double Helix In the early 1950s, American James Watson and Britain Francis Crick determined that DNA is in the shape of.
DNA: The Molecule of Heredity. DNA Structure Deoxyribonucleic acid. A macromolecule composed of two strands of monomers called nucleotides. These strands.
Bioinformatics.
RNA, DNA, & Proteins Chapter 9 & 10.1 Review
What is bioinformatics?. What are bioinformaticians up to, actually? Manage molecular biological data –Store in databases, organise, formalise, describe...
DNA Chapter 10 The Code of Life. History Griffith Hershey and Chase Chargaff Linus Pauling Maurice Wilkins Rosalind Franklin Francis Crick James Watson.
DNA: The Molecule of Heredity
DNA: Structure and Function. DNA Structure Deoxyribonucleic acid. A macromolecule composed of two strands of monomers called nucleotides. These strands.
KEY CONCEPT DNA structure is the same in all organisms.
NUCLEIC ACIDS AND PROTEIN SYNTHESIS. QUESTION 1 DNA.
Nucleic Acids Genetic Material. Nucleic Acids are macromolecules There are two main types: DNARNA.
Inheritance and the Structure of DNA. Deoxyribonucleic Acid.
DNA The Molecule of Life. What is DNA? DeoxyriboNucleic Acid Chargaff’s Law A=T, G=C R. Franklin and M. Wilkins Crystal X-ray J Watson and F Crick Model.
Notes on Nucleic Acids 2 types of nucleic acids: DNA – deoxyribonucleic acid RNA – ribonucleic acid Chapter 8.
Thursday, March 31 st Objective: Explain and apply laws of heredity and their relationship to the structure and function of DNA Agenda: 1. Introduction.
DNA –Was known as a chemical in cells by the end of the nineteenth century –Has the capacity to store genetic information –Can be copied and passed from.
Molecular Genetics Structure of DNA. Phoebus Levene (1920’s) identified the 3 components of DNA molecule –deoxyribose sugars –phosphate groups –nitrogenous.
DNA Introduction. What is DNA? Genetic information of life Type of Nucleic Acid Double Stranded.
Announcements Exam I: Returned at recitation take-home 58% + in-class 80% = 72.7% DRAFT2: Returned in lab this week Class Average: 162/205 = 79% [trajectory]
GENBANK FILE FORMAT LOCUS –LOCUS NAME Is usually the first letter of the genus and species name, followed by the accession number –SEQUENCE LENGTH Number.
Chapter 10: Nucleic Acids And Protein Synthesis Essential Question: What roles do DNA and RNA play in storing genetic information?
DNA, RNA & Protein Synthesis BIO 138. History of DNA Before the 1900’s scientists suspected that our physical characteristics were programmed into our.
Molecular Biology. The study of DNA and how it serves as a chemical basis of heredity.
DNA, RNA & Protein Synthesis BIO 138. History of DNA Before the 1900’s scientists suspected that our physical characteristics were programmed into our.
DNA DNA Deoxyribose Nucleic Acid DNA is a heredity molecule –passed on from parent/s –generation to generation Stores and transmits genetic information.
DNA Sequencing First generation techniques
DNA as Biological Information
Protein databases Henrik Nielsen
DNA as Biological Information
Lec 1 Molecular biology.
THE MOLECULE BASIS OF INHERITANCE
Chapter 10 DNA, RNA, and Protein Synthesis
Nucleic Acids & Protein Synthesis
DNA The Molecule of Life.
Things that may help with comprehension of bioinformatics issues in general and Rosalind problems in particular.
생물정보학 Bioinformatics.
DNA Structure and Function
Cells, Chromosomes, DNA and RNA
DNA: CH 13                .
Unit 7: DNA Structure and Function
Chapter 14.
Nucleic Acids and Protein Synthesis
Deoxyribonucleic Acid
Polymers consisting of nucleotide monomers.
DNA and RNA Ch 12.
DNA The Code of Life.
Introduction and background information
A Lot More Advanced Biotechnology Tools
Presentation transcript:

DNA as Biological Information Rasmus Wernersson Henrik Nielsen

Overview Learning objectives –About Biological Information –A note about DNA sequencing techniques and DNA data –File formats used for biological data –Introduction to the GenBank database

Hvad er gener? rough strain & DNA from killed smooth strain

DNA: sammensætning Omkring 1950 vidste man at DNA var en polymer af nukleotider – nærmere bestemt deoxyribonukleotider. De fire nukleotider der udgør DNA er kun forskellige i deres nitrogen-base. Der er to puriner (adenin og guanin) og to pyrimidiner (cytosin og thymin). Uracil (en pyrimidin) forekommer kun i RNA

Deoxyribonukleotider 1’ 2’ 3’ 4’ 5’ deoxy

DNA: sammensætning 2 Chargaff’s regel: Der er lige mængder A og T samt lige mængder C og G. (mens forholdet mellem G+C og A+T kan variere)

DNA: Røntgenkrystallografi Røntgenkrystallografi: Rosalind Franklin DNA præparation: Maurice Wilkins Modelbygning og tolkning af røntgenspektre: Francis Crick & James Watson

Watson & Crick 1953

DNA Struktur

Information flow in biological systems

DNA sequences = summary of information 5’ AGACC 3’ 3’ TCTGG 5’ 5’ ATGGCCAGGTAA 3’ DNA backbone: (Deoxy)ribose: Ribose Deoxyribose ’ 3’ 5’ 3’

PCR Melting 96º, 30 sec Annealing ~55º, 30 sec Extension 72º, 30 sec 35 cycles Animation :

PCR Animation: PCR graph:

Gel electrophoresis DNA fragments are separated using gel electrophoresis –Typically 1% agarose –Colored with EtBr or ZybrGreen (glows in UV light). –A DNA ”ladder” is used for identification of known DNA lengths. Gel picture: PCR setup: + -

The Sanger method of DNA sequencing Images: } Terminator X-ray sequenceing gel OH

Automated sequencing The major break-through of sequencing has happened through automation. Fluorescent dyes. Laser based scanning. Capillary electrophoresis Computer based base- calling and assembly. Images:

Handout exercise: ”base-calling” Handout: Chromotogram Groups of 2-3. Tasks: –Identify “difficult” regions –Identify “difficult” sequence stretches. –Try to estimate the best interval to use.

Sequence read mapping

DNA sekventering - historie 1972 Rekombinant DNA teknik [Paul Berg] Det første sekventerede genom, bakteriofagen MS2 [Walter Fiers et al.] 1977 DNA sekventering ved kemisk kløvning [Allan Maxam & Walter Gilbert]; DNA sekventering ved enzymatisk syntese [Fred Sanger] GenBank (offentlig database over DNA sekvenser) Den første automatiske sekventeringsmaskine, Prism 373 [Applied Biosystems] Human Genome Project søsættes Det første genom af en fritlevende organisme, bakterien Haemophilus influenzae (1.8 Mb) [The Institute for Genomic Research (TIGR)] Det første genom af en eukaryot, bagegær, Saccharomyces cerevisiae (12.1 Mb) [Internationalt konsortium] Det første genom af et dyr, rundormen Caenorhabditis elegans (97Mb) [Sanger Center og samarbejdspartnere] De første “drafts” af det humane genom (3Gb) [Human Genome Project Consortium (Nature, 15 Feb) + Celera (Science, 16 Feb)]. 15. Dec GenBank release 187 indeholder sekvenser med i alt nukleotider (filerne fylder 568 GB).

Cost of sequencing

Background - Nucleotide databases GenBank, National Center for Biotechnology Information (NCBI), National Library of Medicine (NLM), National Institutes of Health (NIH), USA Established in EMBL, European Bioinformatics Institute (EBI), England Established in 1980 by the European Molecular Biology Laboratory, Heidelberg, Germany Now part of ENA, the European Nucleotide Archive, DDBJ, National Institute of Genetics, Japan Together they form International Nucleotide Sequence Database Collaboration,

Nucleotide database growth Growth is roughly exponential But doubling time has increased from ~20 months (1990s) to ~50 months (2010) NB: The databases are public — no restrictions on the use of the data within.

FASTA format >alpha-D ATGCTGACCGACTCTGACAAGAAGCTGGTCCTGCAGGTGTGGGAGAAGGTGATCCGCCAC CCAGACTGTGGAGCCGAGGCCCTGGAGAGGTGCGGGCTGAGCTTGGGGAAACCATGGGCA AGGGGGGCGACTGGGTGGGAGCCCTACAGGGCTGCTGGGGGTTGTTCGGCTGGGGGTCAG CACTGACCATCCCGCTCCCGCAGCTGTTCACCACCTACCCCCAGACCAAGACCTACTTCC CCCACTTCGACTTGCACCATGGCTCCGACCAGGTCCGCAACCACGGCAAGAAGGTGTTGG CCGCCTTGGGCAACGCTGTCAAGAGCCTGGGCAACCTCAGCCAAGCCCTGTCTGACCTCA GCGACCTGCATGCCTACAACCTGCGTGTCGACCCTGTCAACTTCAAGGCAGGCGGGGGAC GGGGGTCAGGGGCCGGGGAGTTGGGGGCCAGGGACCTGGTTGGGGATCCGGGGCCATGCC GGCGGTACTGAGCCCTGTTTTGCCTTGCAGCTGCTGGCGCAGTGCTTCCACGTGGTGCTG GCCACACACCTGGGCAACGACTACACCCCGGAGGCACATGCTGCCTTCGACAAGTTCCTG TCGGCTGTGTGCACCGTGCTGGCCGAGAAGTACAGATAA >alpha-A ATGGTGCTGTCTGCCAACGACAAGAGCAACGTGAAGGCCGTCTTCGGCAAAATCGGCGGC CAGGCCGGTGACTTGGGTGGTGAAGCCCTGGAGAGGTATGTGGTCATCCGTCATTACCCC ATCTCTTGTCTGTCTGTGACTCCATCCCATCTGCCCCCATACTCTCCCCATCCATAACTG TCCCTGTTCTATGTGGCCCTGGCTCTGTCTCATCTGTCCCCAACTGTCCCTGATTGCCTC TGTCCCCCAGGTTGTTCATCACCTACCCCCAGACCAAGACCTACTTCCCCCACTTCGACC TGTCACATGGCTCCGCTCAGATCAAGGGGCACGGCAAGAAGGTGGCGGAGGCACTGGTTG AGGCTGCCAACCACATCGATGACATCGCTGGTGCCCTCTCCAAGCTGAGCGACCTCCACG CCCAAAAGCTCCGTGTGGACCCCGTCAACTTCAAAGTGAGCATCTGGGAAGGGGTGACCA GTCTGGCTCCCCTCCTGCACACACCTCTGGCTACCCCCTCACCTCACCCCCTTGCTCACC ATCTCCTTTTGCCTTTCAGCTGCTGGGTCACTGCTTCCTGGTGGTCGTGGCCGTCCACTT CCCCTCTCTCCTGACCCCGGAGGTCCATGCTTCCCTGGACAAGTTCGTGTGTGCCGTGGG CACCGTCCTTACTGCCAAGTACCGTTAA (Handout)

GenBank format Originates from the GenBank database. Contains both a DNA sequence and annotation of feature (e.g. Location of genes). (handout)

GenBank format - HEADER LOCUS CMGLOAD 1185 bp DNA linear VRT 18-APR-2005 DEFINITION Cairina moschata (duck) gene for alpha-D globin. ACCESSION X01831 VERSION X GI:62724 KEYWORDS alpha-globin; globin. SOURCE Cairina moschata (Muscovy duck) ORGANISM Cairina moschata Eukaryota; Metazoa; Chordata; Craniata; Vertebrata; Euteleostomi; Archosauria; Aves; Neognathae; Anseriformes; Anatidae; Cairina. REFERENCE 1 (bases 1 to 1185) AUTHORS Erbil,C. and Niessing,J. TITLE The primary structure of the duck alpha D-globin gene: an unusual 5' splice junction sequence JOURNAL EMBO J. 2 (8), (1983) PUBMED COMMENT Data kindly reviewed (13-NOV-1985) by J. Niessing.

GenBank format - ORIGIN section ORIGIN 1 ctgcgtggcc tcagcccctc cacccctcca cgctgataag ataaggccag ggcgggagcg 61 cagggtgcta taagagctcg gccccgcggg tgtctccacc acagaaaccc gtcagttgcc 121 agcctgccac gccgctgccg ccatgctgac cgccgaggac aagaagctca tcgtgcaggt 181 gtgggagaag gtggctggcc accaggagga attcggaagt gaagctctgc agaggtgtgg 241 gctgggccca gggggcactc acagggtggg cagcagggag caggagccct gcagcgggtg 301 tgggctggga cccagagcgc cacggggtgc gggctgagat gggcaaagca gcagggcacc 361 aaaactgact ggcctcgctc cggcaggatg ttcctcgcct acccccagac caagacctac 421 ttcccccact tcgacctgca tcccggctct gaacaggtcc gtggccatgg caagaaagtg 481 gcggctgccc tgggcaatgc cgtgaagagc ctggacaacc tcagccaggc cctgtctgag 541 ctcagcaacc tgcatgccta caacctgcgt gttgaccctg tcaacttcaa ggcaagcggg 601 gactagggtc cttgggtctg ggggtctgag ggtgtggggt gcagggtctg ggggtccagg 661 ggtctgagtt tcctggggtc tggcagtcct gggggctgag ggccagggtc ctgtggtctt 721 gggtaccagg gtcctggggg ccagcagcca gacagcaggg gctgggattg catctgggat 781 gtgggccaga ggctgggatt gtgtttggaa tgggagctgg gcaggggcta gggccagggt 841 gggggactca gggcctcagg gggactcggg gggggactga gggagactca gggccatctg 901 tccggagcag gggtactaag ccctggtttg ccttgcagct gctggcacag tgcttccagg 961 tggtgctggc cgcacacctg ggcaaagact acagccccga gatgcatgct gcctttgaca 1021 agttcttgtc cgccgtggct gccgtgctgg ctgaaaagta cagatgagcc actgcctgca 1081 cccttgcacc ttcaataaag acaccattac cacagctctg tgtctgtgtg tgctgggact 1141 gggcatcggg ggtcccaggg agggctgggt tgcttccaca catcc //

FEATURES Location/Qualifiers source /organism="Cairina moschata" /mol_type="genomic DNA" /db_xref="taxon:8855" CAAT_signal TATA_signal precursor_RNA /note="primary transcript" exon /number=1 CDS join( , , ) /codon_start=1 /product="alpha D-globin" /protein_id="CAA " /db_xref="GI: " /db_xref="GOA:P02003" /db_xref="InterPro:IPR000971" /db_xref="InterPro:IPR002338" /db_xref="InterPro:IPR002340" /db_xref="InterPro:IPR009050" /db_xref="UniProt/Swiss-Prot:P02003" /translation="MLTAEDKKLIVQVWEKVAGHQEEFGSEALQRMFLAYPQTKTYFP HFDLHPGSEQVRGHGKKVAAALGNAVKSLDNLSQALSELSNLHAYNLRVDPVNFKLLA QCFQVVLAAHLGKDYSPEMHAAFDKFLSAVAAVLAEKYR" repeat_region /note="direct repeat 1" intron /number=1 repeat_region /note="direct repeat 1" exon /number=2 intron /number=2 exon /number=3 polyA_signal polyA_signal 1114 GenBank format - FEATURE section

Exercise: GenBank Work in groups of 2-3 people. The exercise guide is linked from the course programme. Read the guide carefully - it contains a lot of information about GenBank.