Christopher Dougherty EC220 - Introduction to econometrics (chapter 12) Slideshow: consequences of autocorrelation Original citation: Dougherty, C. (2012)

Slides:



Advertisements
Similar presentations
EC220 - Introduction to econometrics (chapter 2)
Advertisements

EC220 - Introduction to econometrics (chapter 1)
1 Although they are biased in finite samples if Part (2) of Assumption C.7 is violated, OLS estimators are consistent if Part (1) is valid. We will demonstrate.
EC220 - Introduction to econometrics (chapter 13)
ADAPTIVE EXPECTATIONS 1 The dynamics in the partial adjustment model are attributable to inertia, the drag of the past. Another, completely opposite, source.
EXPECTED VALUE RULES 1. This sequence states the rules for manipulating expected values. First, the additive rule. The expected value of the sum of two.
ADAPTIVE EXPECTATIONS: FRIEDMAN'S PERMANENT INCOME HYPOTHESIS
EC220 - Introduction to econometrics (chapter 14)
EC220 - Introduction to econometrics (chapter 11)
1 SIMULTANEOUS EQUATIONS MODELS Most of the issues relating to the fitting of simultaneous equations models with time series data are similar to those.
Christopher Dougherty EC220 - Introduction to econometrics (review chapter) Slideshow: the central limit theorem Original citation: Dougherty, C. (2012)
EC220 - Introduction to econometrics (chapter 2)
Christopher Dougherty EC220 - Introduction to econometrics (review chapter) Slideshow: probability distribution example: x is the sum of two dice Original.
EC220 - Introduction to econometrics (chapter 14)
EC220 - Introduction to econometrics (review chapter)
EC220 - Introduction to econometrics (chapter 11)
Christopher Dougherty EC220 - Introduction to econometrics (chapter 9) Slideshow: two-stage least squares Original citation: Dougherty, C. (2012) EC220.
EC220 - Introduction to econometrics (review chapter)
EC220 - Introduction to econometrics (chapter 8)
Christopher Dougherty EC220 - Introduction to econometrics (chapter 11) Slideshow: model c assumptions Original citation: Dougherty, C. (2012) EC220 -
EC220 - Introduction to econometrics (chapter 8)
Christopher Dougherty EC220 - Introduction to econometrics (chapter 8) Slideshow: model b: properties of the regression coefficients Original citation:
Christopher Dougherty EC220 - Introduction to econometrics (chapter 2) Slideshow: one-sided t tests Original citation: Dougherty, C. (2012) EC220 - Introduction.
Christopher Dougherty EC220 - Introduction to econometrics (review chapter) Slideshow: one-sided t tests Original citation: Dougherty, C. (2012) EC220.
EC220 - Introduction to econometrics (chapter 1)
Christopher Dougherty EC220 - Introduction to econometrics (chapter 8) Slideshow: Friedman’s critique of OLS estimation of the consumption function Original.
THE ERROR CORRECTION MODEL 1 The error correction model is a variant of the partial adjustment model. As with the partial adjustment model, we assume a.
1 MAXIMUM LIKELIHOOD ESTIMATION OF REGRESSION COEFFICIENTS X Y XiXi 11  1  +  2 X i Y =  1  +  2 X We will now apply the maximum likelihood principle.
MODELS WITH A LAGGED DEPENDENT VARIABLE
EC220 - Introduction to econometrics (chapter 3)
EC220 - Introduction to econometrics (chapter 4)
1 This very short sequence presents an important definition, that of the independence of two random variables. Two random variables X and Y are said to.
Christopher Dougherty EC220 - Introduction to econometrics (review chapter) Slideshow: exercise r.22 Original citation: Dougherty, C. (2012) EC220 - Introduction.
EC220 - Introduction to econometrics (review chapter)
Christopher Dougherty EC220 - Introduction to econometrics (review chapter) Slideshow: asymptotic properties of estimators: the use of simulation Original.
Christopher Dougherty EC220 - Introduction to econometrics (review chapter) Slideshow: expected value of a random variable Original citation: Dougherty,
Christopher Dougherty EC220 - Introduction to econometrics (review chapter) Slideshow: population variance of a discreet random variable Original citation:
EC220 - Introduction to econometrics (chapter 5)
The third sequence defined the expected value of a function of a random variable X. There is only one function that is of much interest to us, at least.
EC220 - Introduction to econometrics (chapter 5)
EC220 - Introduction to econometrics (chapter 10)
Christopher Dougherty EC220 - Introduction to econometrics (chapter 2) Slideshow: a Monte Carlo experiment Original citation: Dougherty, C. (2012) EC220.
Christopher Dougherty EC220 - Introduction to econometrics (chapter 11) Slideshow: adaptive expectations Original citation: Dougherty, C. (2012) EC220.
EC220 - Introduction to econometrics (chapter 7)
EC220 - Introduction to econometrics (chapter 7)
MEASUREMENT ERROR 1 In this sequence we will investigate the consequences of measurement errors in the variables in a regression model. To keep the analysis.
EC220 - Introduction to econometrics (chapter 2)
EC220 - Introduction to econometrics (chapter 9)
Christopher Dougherty EC220 - Introduction to econometrics (review chapter) Slideshow: expected value of a function of a random variable Original citation:
Christopher Dougherty EC220 - Introduction to econometrics (chapter 3) Slideshow: prediction Original citation: Dougherty, C. (2012) EC220 - Introduction.
Christopher Dougherty EC220 - Introduction to econometrics (chapter 10) Slideshow: maximum likelihood estimation of regression coefficients Original citation:
Christopher Dougherty EC220 - Introduction to econometrics (review chapter) Slideshow: the normal distribution Original citation: Dougherty, C. (2012)
EC220 - Introduction to econometrics (review chapter)
Christopher Dougherty EC220 - Introduction to econometrics (review chapter) Slideshow: sampling and estimators Original citation: Dougherty, C. (2012)
Christopher Dougherty EC220 - Introduction to econometrics (chapter 12) Slideshow: autocorrelation, partial adjustment, and adaptive expectations Original.
Christopher Dougherty EC220 - Introduction to econometrics (review chapter) Slideshow: conflicts between unbiasedness and minimum variance Original citation:
Christopher Dougherty EC220 - Introduction to econometrics (chapter 8) Slideshow: measurement error Original citation: Dougherty, C. (2012) EC220 - Introduction.
Christopher Dougherty EC220 - Introduction to econometrics (chapter 11) Slideshow: Friedman Original citation: Dougherty, C. (2012) EC220 - Introduction.
CONSEQUENCES OF AUTOCORRELATION
EC220 - Introduction to econometrics (chapter 8)
Christopher Dougherty EC220 - Introduction to econometrics (chapter 12) Slideshow: footnote: the Cochrane-Orcutt iterative process Original citation: Dougherty,
A.1The model is linear in parameters and correctly specified. PROPERTIES OF THE MULTIPLE REGRESSION COEFFICIENTS 1 Moving from the simple to the multiple.
Christopher Dougherty EC220 - Introduction to econometrics (chapter 9) Slideshow: instrumental variable estimation: variation Original citation: Dougherty,
Christopher Dougherty EC220 - Introduction to econometrics (chapter 6) Slideshow: multiple restrictions and zero restrictions Original citation: Dougherty,
1 We will continue with a variation on the basic model. We will now hypothesize that p is a function of m, the rate of growth of the money supply, as well.
Christopher Dougherty EC220 - Introduction to econometrics (review chapter) Slideshow: alternative expression for population variance Original citation:
INSTRUMENTAL VARIABLES 1 Suppose that you have a model in which Y is determined by X but you have reason to believe that Assumption B.7 is invalid and.
1 ESTIMATORS OF VARIANCE, COVARIANCE, AND CORRELATION We have seen that the variance of a random variable X is given by the expression above. Variance.
Christopher Dougherty EC220 - Introduction to econometrics (review chapter) Slideshow: independence of two random variables Original citation: Dougherty,
Introduction to Econometrics, 5th edition
Presentation transcript:

Christopher Dougherty EC220 - Introduction to econometrics (chapter 12) Slideshow: consequences of autocorrelation Original citation: Dougherty, C. (2012) EC220 - Introduction to econometrics (chapter 12). [Teaching Resource] © 2012 The Author This version available at: Available in LSE Learning Resources Online: May 2012 This work is licensed under a Creative Commons Attribution-ShareAlike 3.0 License. This license allows the user to remix, tweak, and build upon the work even for commercial purposes, as long as the user credits the author and licenses their new creations under the identical terms

CONSEQUENCES OF AUTOCORRELATION 1 The consequences of autocorrelation for OLS are similar to those of heteroscedasticity. In general, the regression coefficients remain unbiased, but OLS is inefficient because one can find an alternative regression technique that yields estimators with smaller variances.

CONSEQUENCES OF AUTOCORRELATION 2 The other main consequence is that autocorrelation causes the standard errors to be estimated wrongly, often being biased downwards. Finally, although in general OLS estimates are unbiased, there is an important special case where they are biased.

CONSEQUENCES OF AUTOCORRELATION 3 Unbiasedness is easily demonstrated, provided that Assumption C.7 is satisfied. In the case of the simple regression model shown, we have seen that the OLS estimator of the slope coefficient can be decomposed as the second line where the a t are as defined in the third line.

CONSEQUENCES OF AUTOCORRELATION 4 Now, if Assumption C.7 is satisfied, a t and u t are distributed independently and we can write the expectation of b 2 as shown. At no point have we made any assumption concerning whether u t is, or is not, subject to autocorrelation.

CONSEQUENCES OF AUTOCORRELATION 5 All that we now require is E(u t ) = 0 and this is easily demonstrated.

CONSEQUENCES OF AUTOCORRELATION 6 For example, in the case of AR(1) autocorrelation, lagging the process one time period, we have the second line. Substituting for u t–1 in the first equation, we obtain the third.

CONSEQUENCES OF AUTOCORRELATION 7 Continuing to lag and substitute, we can express u t in terms of current and lagged values of  t with diminishing weights. Since, by definition, the expected value of each innovation is zero, the expected value of u t is zero.

CONSEQUENCES OF AUTOCORRELATION 8 For higher order AR autocorrelation, the demonstration is essentially similar. For moving average autocorrelation, the result is immediate.

CONSEQUENCES OF AUTOCORRELATION 9 For multiple regression analysis, the demonstration is the same, except that a t is replaced by a t *, where a t * depends on all of the observations on all of the explanatory variables in the model.

CONSEQUENCES OF AUTOCORRELATION 10 We will not pursue analytically the other consequences of autocorrelation. Suffice to mention that the proof of the Gauss–Markov theorem, which guarantees the efficiency of the OLS estimators, does require no autocorrelation, as do the expressions for the standard errors.

CONSEQUENCES OF AUTOCORRELATION 11 Now we come to the special case where OLS yields inconsistent estimators if the disturbance term is subject to autocorrelation.

CONSEQUENCES OF AUTOCORRELATION 12 If the model specification includes a lagged dependent variable, OLS estimators are biased and inconsistent if the disturbance term is subject to autocorrelation. This will be demonstrated for AR(1) autocorrelation and an ADL(1,0) model with one X variable.

CONSEQUENCES OF AUTOCORRELATION 13 Lagging the ADL(1,0) model by one time period, we obtain the third line. Thus Y t–1 depends on u t–1. As a consequence of the AR(1) autocorrelation u t also depends on u t–1.

CONSEQUENCES OF AUTOCORRELATION 14 Hence we have a violation of part (1) of Assumption C.7. The explanatory variables, Y t–1, is not distributed independently of the disturbance term. As a consequence, OLS will yield inconsistent estimates.

CONSEQUENCES OF AUTOCORRELATION 15 This was described as a special case, but actually it is an important one. ADL models are frequently used in time series regressions and autocorrelation is a common problem.

Copyright Christopher Dougherty These slideshows may be downloaded by anyone, anywhere for personal use. Subject to respect for copyright and, where appropriate, attribution, they may be used as a resource for teaching an econometrics course. There is no need to refer to the author. The content of this slideshow comes from Section 12.1 of C. Dougherty, Introduction to Econometrics, fourth edition 2011, Oxford University Press. Additional (free) resources for both students and instructors may be downloaded from the OUP Online Resource Centre Individuals studying econometrics on their own and who feel that they might benefit from participation in a formal course should consider the London School of Economics summer school course EC212 Introduction to Econometrics or the University of London International Programmes distance learning course 20 Elements of Econometrics