FINESSE FINESSE Frequency Domain Interferometer Simulation Versatile simulation software for user-defined interferometer topologies. Fast, easy to use.

Slides:



Advertisements
Similar presentations
Stefan Hild, Andreas Freise University of Birmingham Roland Schilling, Jerome Degallaix AEI Hannover January 2008, Virgo week, Pisa Advanced Virgo: Wedges.
Advertisements

Beyond The Standard Quantum Limit B. W. Barr Institute for Gravitational Research University of Glasgow.
Max-Planck-Institut für Gravitationsphysik (Albert-Einstein-Institut) HOMODYNE AND HETERODYNE READOUT OF A SIGNAL- RECYCLED GRAVITATIONAL WAVE DETECTOR.
Gravitational Wave Astronomy Dr. Giles Hammond Institute for Gravitational Research SUPA, University of Glasgow Universität Jena, August 2010.
Optical simulations within and beyond the paraxial limit 1 Daniel Brown, Charlotte Bond and Andreas Freise University of Birmingham.
19. October 2004 A. Freise Automatic Alignment using the Anderson Technique A. Freise European Gravitational Observatory Roma
Dual Recycling for GEO 600 Andreas Freise, Hartmut Grote Institut für Atom- und Molekülphysik Universität Hannover Max-Planck-Institut für Gravitationsphysik.
Gravitational Wave Astronomy Dr. Giles Hammond Institute for Gravitational Research SUPA, University of Glasgow Universität Jena, August 2010.
Laser Physics EAL 501 Lecture 6 Power & Frequency.
Gaussian Beam Propagation Code
Polarization Techniques for Interferometer Control Peter Beyersdorf National Astronomical Observatory of Japan LSC March 2002 Advanced Configurations LIGO-G Z.
Optics of GW detectors Jo van den Brand
Optical simulation – March 04 1 Optical Simulation François BONDU VIRGO Tools Goals Example: tuning of modulation frequency A few questions.
Marcus Benna, University of Cambridge Wavefront Sensing in Dual-Recycled Interferometers LIGO What is Wavefront Sensing? How does it work? –Detection of.
Matthew Evans, Ph237 April Application of Simulation to LIGO Interferometers  Who am I? »Matthew Evans, Ph.D. from Caltech on Lock Acquisition 
Higher order TEM modes: Why and How? Andreas Freise European Gravitational Observatory 17. March 2004.
Lecture 1 Review of Wave optics Today Introduction to this course Light waves in homogeneous medium Monochromatic Waves in inhomogeneous medium.
Thermally Deformable Mirrors: a new Adaptive Optics scheme for Advanced Gravitational Wave Interferometers Marie Kasprzack Laboratoire de l’Accélérateur.
Higher order laser modes in gravitational wave detectors
Marcus Benna, University of Cambridge Wavefront Sensing in Dual-Recycled Interferometers LIGO What is Wavefront Sensing? How does it work? –Detection of.
Stefan Hild, Andreas Freise, Simon Chelkowski University of Birmingham Roland Schilling, Jerome Degallaix AEI Hannover Maddalena Mantovani EGO, Cascina.
Stefan Hild, Andreas Freise, Simon Chelkowski University of Birmingham Roland Schilling, Jerome Degallaix AEI Hannover Maddalena Mantovani EGO, Cascina.
1 Polarisation effects in 4 mirrors cavities Introduction Polarisation eigenmodes calculation Numerical illustrations F. Zomer LAL/Orsay Posipol 2008 Hiroshima.
Modeling beam and mirror distortions using modal models: FINESSE V.1 Charlotte Bond, Daniel Brown and Andreas Freise Tokyo Institute of Technology 21/06/2013.
Andreas Freise ILIAS WG1 Meeting CERN (29-Mar-07) GEO 600 Simulation Group.
Optical Configuration Advanced Virgo Review Andreas Freise for the OSD subsystem.
The GEO 600 Detector Andreas Freise for the GEO 600 Team Max-Planck-Institute for Gravitational Physics University of Hannover May 20, 2002.
Stefan Hild October 2007 LSC-Virgo meeting Hannover Interferometers with detuned arm cavaties.
1 The Status of Melody: An Interferometer Simulation Program Amber Bullington Stanford University Optics Working Group March 17, 2004 G D.
Finesse Update + Noise Propagation-Simulation Tutorial AEI, Hannover Andreas Freise University of Birmingham.
Modulation techniques for length sensing and control of advanced optical topologies B.W. Barr, S.H. Huttner, J.R. Taylor, B. Sorazu, M.V. Plissi and K.A.
04. November 2004 A. Freise A. Freise, M. Loupias Collaboration Meeting November 04, 2004 Alignment Status.
GEO600 Detector Status Harald Lück Max-Planck Institut für Gravitationsphysik Institut für Atom- und Molekülphysik, Uni Hannover.
1 GEO Simulation Workshop, October 25 th 2007 M Laval The Virgo FFT code: DarkF Mikael Laval CNRS UMR 6162 ARTEMIS, Observatoire de la Côte d’Azur, Nice,
G Z AJW for Marcus Benna, Cambridge Wavefront Sensing for Advanced LIGO Model of wavefront sensing in a dual- recycled interferometer Consequences.
Advanced Virgo Optical Configuration ILIAS-GW, Tübingen Andreas Freise - Conceptual Design -
Koji Arai – LIGO Laboratory / Caltech LIGO-G v2.
A. Freise FINESSE + FINESSE + future plans and work in progress Andreas Freise 22nd July 2006.
July 2003 Chuck DiMarzio, Northeastern University ECEG105 & ECEU646 Optics for Engineers Course Notes Part 8: Gaussian Beams Prof. Charles A.
LIGO-G0200XX-00-M LIGO Scientific Collaboration1 First Results from the Mesa Beam Profile Cavity Prototype Marco Tarallo 26 July 2005 Caltech – LIGO Laboratory.
ABSTRACT The design of a complete system level modeling and simulation tool for optical micro-systems is the focus of our research . We use a rigorous.
Basic electromagnetics and interference Optics, Eugene Hecht, Chpt 3.
Advanced LIGO Simulation, 6/1/06 Elba G E 1 ✦ LIGO I experience ✦ FP cavity : LIGO I vs AdvLIGO ✦ Simulation tools ✦ Time domain model Advanced.
M. Mantovani, ILIAS Meeting 7 April 2005 Hannover Linear Alignment System for the VIRGO Interferometer M. Mantovani, A. Freise, J. Marque, G. Vajente.
Dual Recycling in GEO 600 H. Grote, A. Freise, M. Malec for the GEO600 team Institut für Atom- und Molekülphysik University of Hannover Max-Planck-Institut.
Nonlinear Optics Lab. Hanyang Univ. Chapter 6. Processes Resulting from the Intensity-Dependent Refractive Index - Optical phase conjugation - Self-focusing.
ECE-1466 Modern Optics Course Notes Part 3
1 Locking in Virgo Matteo Barsuglia ILIAS, Cascina, July 7 th 2004.
Advanced Virgo: Optical Simulation and Design Advanced Virgo review Andreas Freise for the OSD Subsystem.
Modelling and Simulation of Passive Optical Devices João Geraldo P. T. dos Reis and Henrique J. A. da Silva Introduction Integrated Optics is a field of.
A. Freise1 Phase and alignment noise in grating interferometers Andreas Freise QND Meeting, Hannover
The Mechanical Simulation Engine library An Introduction and a Tutorial G. Cella.
Monica VarvellaIEEE - GW Workshop Roma, October 21, M.Varvella Virgo LAL Orsay / LIGO CalTech Time-domain model for AdvLIGO Interferometer Gravitational.
FINESSE FINESSE Frequency Domain Interferometer Simulation Andreas Freise European Gravitational Observatory 17. March 2004.
Calibration and the status of the photon calibrators Evan Goetz University of Michigan with Peter Kalmus (Columbia U.) & Rick Savage (LHO) 17 October 2006.
FDTD Simulation of Diffraction Grating Displacement Noise 1 Daniel Brown University of Birmingham AEI, Hanover - 14/12/2010.
Interferometer configurations for Gravitational Wave Detectors
GEO 600 Simulation Workshop
A look at interferometer topologies that use reflection gratings
Quantum noise reduction using squeezed states in LIGO
Workshop on Gravitational Wave Detectors, IEEE, Rome, October 21, 2004
Modeling of Advanced LIGO with Melody
First Results from the Mesa Beam Profile Cavity Prototype
Thermal lensing effect: Experimental measurements - Simulation with DarkF & Finesse J. Marque (Measurements analysis: M. Punturo; DarkF simulation: M.
“Traditional” treatment of quantum noise
Alignment Simulation Tool
LIGO Scientific Collaboration
Some features of NV. Vincent Loriette.
Advanced Virgo ISC subsystem
Homodyne detection: understanding the laser noise amplitude transfer function Jérôme Degallaix Ilias meeting – June 2007.
Presentation transcript:

FINESSE FINESSE Frequency Domain Interferometer Simulation Versatile simulation software for user-defined interferometer topologies. Fast, easy to use. Andreas Freise xx. October 2005

11. July 2003 Andreas Freise

light power, field amplitudes eigenmodes, beam shape error/control signals (modulation-demodulation) transfer functions, sensitivities, noise couplings alignment error signals, mode matching, etc. Possible Outputs of FINESSE

11. July 2003 Andreas Freise Interferometer Simulation Components: mirrors, free space, etc. Nodes: connection between components

11. July 2003 Andreas Freise Plane Waves – Frequency Domain Coupling of light fields: Set of linear equations: solved numerically

11. July 2003 Andreas Freise Frequency Domain Simple cavity: two mirrors + one space (4 nodes) Light source (laser) Output signal (detector)

11. July 2003 Andreas Freise Frequency Domain one Fourier frequency one complex output signal

11. July 2003 Andreas Freise Static response phase modulation = sidebands 3 fields, 3 beat signals

11. July 2003 Andreas Freise Frequency Response infenitesimal phase modulation 9 frequencies, 13 beat signals

11. July 2003 Andreas Freise From Plane Waves to Par-Axial Modes The electric field is described as a sum of the frequency components and Hermite-Gauss modes: Example: lowest-order Hermite-Gauss: Gaussian beam parameter q

11. July 2003 Andreas Freise Gaussian Beam Parameters  Compute cavity eigenmodes start node  Trace beam and set beam parameters

11. July 2003 Andreas Freise Using Par-Axial Modes Hermite-Gauss modes allow to analyse the optical system with respect to alignment and beam shape. Both misalignment and mismatch of beam shapes (mode mismatch) can be described as scattering of light into higher- order spatial modes. This means that the spatial modes are coupled where an optical component is misaligned and where the beam sizes are not matched.

11. July 2003 Andreas Freise Mode Mismatch and Misalignment Mode mismatch or misalignemt can be described as light scattering in higher-order spatial modes. Coupling coefficiants for the interferometer matrix are derived by projecting beam 1 on beam 2:

11. July 2003 Andreas Freise Power Recycling Signals End mirrors with imperfect radius of curvature beamsplitter: „tilt“ motion

11. July 2003 Andreas Freise Power Recycling Signals

11. July 2003 Andreas Freise Current and Future Work  Add grating components (for all-reflective interferometer configurations)  Include a correct computation of quantum noise (for interferometers with suspended optics)  Adapt the numerical algorithm so that the programme can be run on a cluster  Add polarisation as a degree of freedom

11. July 2003 Andreas Freise FINESSE

11. July 2003 Andreas Freise FINESSE: Fast and (fairly) well tested TEM order Omatrix elements(effective) computation time (100 data points) 0~ <1 sec 5~ sec Example: Optical layout of GEO 600 (80 nodes) The Hermite-Gauss analysis has been validated by: computing mode-cleaner autoalignment error signals (G. Heinzel) comparing it to OptoCad (program for tracing Gaussian beams by R. Schilling) comparing it to FFT propagation simulations (R. Schilling)

11. July 2003 Andreas Freise Mode Healing power recycling only: Each recycling cavity minimises the loss due to mode mismatch of the respective other with signal recycling:

11. July 2003 Andreas Freise Mode Healing T MSR

11. July 2003 Andreas Freise Higher order modes  Based on TEM Gauss modes, n+m limited by memory and time  Automatic beam tracing through user-defined optical setups  Coupling coefficients for misalignment, mode mismatch (no phase maps, no clipping)  Outputs:  normal detectors  split (or otherwise shapes) detectors  CCD like beam images (for beam or selected fields)

11. July 2003 Andreas Freise Gaussian Beam Parameters Example: normal incidence transmission through a curved surface: Transforming Gaussian beam parameters by optical elements with ABCD matrices: