Size-dependent recombination dynamics in ZnO nanowires

Slides:



Advertisements
Similar presentations
Opto-Electronics & Materials Laboratory Li-Jen Chou ( ) Investigations on low-dimensional nanostructures: synthesis, characterization, applications and.
Advertisements

EXCITON-PLASMON COUPLING AND BIEXCITONIC NONLINEARITIES IN INDIVIDUAL CARBON NANOTUBES Igor Bondarev Physics Department North Carolina Central University.
PROBING THE BOGOLIUBOV EXCITATION SPECTRUM OF A POLARITON SUPERFLUID BY HETERODYNE FOUR-WAVE-MIXING SPECTROSCOPY Verena Kohnle, Yoan Leger, Maxime Richard,
Lorenzo O. Mereni Valeria Dimastrodonato Gediminas Juska Robert J. Young Emanuele Pelucchi Physical properties of highly uniform InGaAs.
Current POLARITON LIGHT EMITTING DEVICES: RELAXATION DYNAMICS Simos Tsintzos Dept of Materials Sci. & Tech Microelectronics Group University of Crete /
Giant Rabi splitting in metal/semiconductor nanohybrids
1 Mechanism for suppression of free exciton no-phonon emission in ZnO tetrapod nanostructures S. L. Chen 1), S.-K. Lee 1), D. Hongxing 2), Z. Chen 2),
Carrier and Phonon Dynamics in InN and its Nanostructures
2012 Transfer-to-Excellence Research Experiences for Undergraduates Program (TTE REU) Characterization of layered gallium telluride (GaTe) Omotayo O Olukoya.
Optical properties of infrared emission quaternary InGaAsP epilayers Y. C. Lee a,b, J. L. Shen a, and W. Y. Uen b a. Department of Computer Science and.
X-ray Imaging and Spectroscopy of Individual Nanoparticles A. Fraile Rodríguez, F. Nolting Swiss Light Source Paul Scherrer Institut, Switzerland J. Bansmann.
1 Cross-plan Si/SiGe superlattice acoustic and thermal properties measurement by picosecond ultrasonics Y. Ezzahri, S. Grauby, S. Dilhaire, J.M. Rampnouz,
Optical and electrical characterization of 4H-SiC detectors R. Schifano, A. Vinattieri INFM - Dipartimento di Fisica, Universita ’di Firenze ( Italy) S.
Heraklion, 2014 Si/SiC Nanowire Growth by using Al Catalyst Linsheng Liu.
School of Physics and Astronomy, University of Nottingham, Nottingham, NG7 2RD, UK. Electrically pumped terahertz SASER device using a weakly coupled AlAs/GaAs.
RAMAN SPECTROSCOPY Scattering mechanisms
Paul Sellin, Radiation Imaging Group Charge Drift in partially-depleted epitaxial GaAs detectors P.J. Sellin, H. El-Abbassi, S. Rath Department of Physics.
Space-Separated Quantum Cutting Anthony Yeh EE C235, Spring 2009.
Vladimir Bordo NanoSyd, Mads Clausen Institute Syddansk Universitet, Denmark Waveguiding in nanofibers.
David Gershoni The Physics Department, Technion-Israel Institute of Technology, Haifa, 32000, Israel and Joint Quantum Institute, NIST and University of.
Magneto-optical study of InP/InGaAs/InP quantum well B. Karmakar, A.P. Shah, M.R. Gokhale and B.M. Arora Tata Institute of Fundamental Research Mumbai,
LCLS Studies of Laser Initiated Dynamics Jorgen Larsson, David Reis, Thomas Tschentscher, and Kelly Gaffney provided LUSI management with preliminary Specifications.
Quantum Dots: Confinement and Applications
Optical properties and carrier dynamics of self-assembled GaN/AlGaN quantum dots Ashida lab. Nawaki Yohei Nanotechnology 17 (2006)
Slide # 1 SPM Probe tips CNT attached to a Si probe tip.
ITOH Lab. Hiroaki SAWADA
Femtosecond low-energy electron diffraction and imaging
A photoluminescence study of Cd, In and Sn in ZnO using radioisotopes Joseph Cullen, Martin Henry, Enda McGlynn Dublin City University Karl Johnston Universitat.
Vapor-Liquid-Solid Growth of ZnSiN2
InAs on GaAs self assembled Quantum Dots By KH. Zakeri sharif University of technology, Spring 2003.
Page 1 Band Edge Electroluminescence from N + -Implanted Bulk ZnO Hung-Ta Wang 1, Fan Ren 1, Byoung S. Kang 1, Jau-Jiun Chen 1, Travis Anderson 1, Soohwan.
Optical Characterization of GaN-based Nanowires : From Nanometric Scale to Light Emitting Devices A-L. Bavencove*, E. Pougeoise, J. Garcia, P. Gilet, F.
Evidence of Radiational Transitions in the Triplet Manifold of Large Molecules Haifeng Xu, Philip Johnson Stony Brook University Trevor Sears Brookhaven.
Paul Sellin, Radiation Imaging Group Charge Drift in partially-depleted epitaxial GaAs detectors P.J. Sellin, H. El-Abbassi, S. Rath Department of Physics.
Observation of Excited Biexciton States in CuCl Quantum Dots : Control of the Quantum Dot Energy by a Photon Itoh Lab. Hiroaki SAWADA Michio IKEZAWA and.
Yibin Xu National Institute for Materials Science, Japan Thermal Conductivity of Amorphous Si and Ge Thin Films.
Optical Characterization methods Rayleigh scattering Raman scattering transmission photoluminescence excitation photons At a glance  Transmission: “untouched”
Photo-induced ferromagnetism in bulk-Cd 0.95 Mn 0.05 Te via exciton Y. Hashimoto, H. Mino, T. Yamamuro, D. Kanbara, A T. Matsusue, B S. Takeyama Graduate.
SAINT-PETERSBURG STATE UNIVERSITY EXPERIMENTAL STUDY OF SPIN MEMORY IN NANOSTRUCTURES ROMAN V. CHERBUNIN.
M. Zamfirescu, M. Ulmeanu, F. Jipa, O. Cretu, A. Moldovan, G. Epurescu, M. Dinescu, R. Dabu National Institute for Laser Plasma and Radiation Physics,
Ultrafast Carrier Dynamics in Graphene M. Breusing, N. Severin, S. Eilers, J. Rabe and T. Elsässer Conclusion information about carrier distribution with10fs.
Magnetization dynamics
Size dependence of confined acoustic phonons in CuCl nanocrystals Itoh lab Takanobu Yamazaki Itoh lab Takanobu Yamazaki J. Zhao and Y. Masumoto, Phys.
Micro-optical studies of optical properties and electronic states of ridge quantum wire lasers Presented at Department of Physics, Graduate.
Low Temperature Characteristics of ZnO Photoluminescence Spectra Matthew Xia Columbia University Advisor: Dr. Karl Johnston.
Photoluminescence-excitation spectra on n-type doped quantum wire
Observation of ultrafast nonlinear response due to coherent coupling between light and confined excitons in a ZnO crystalline film Ashida Lab. Subaru Saeki.
Slide # 1 Variation of PL with temperature and doping With increase in temperature: –Lattice spacing increases so bandgap reduces, peak shift to higher.
Looking Inside Hidden Excitons with THz Radiation Tim Gfroerer Davidson College Supported by the American Chemical Society – Petroleum Research Fund.
Luminescence basics Types of luminescence
Burnaby - Dublin - Freiberg – Manchester – Saarbrücken - ISOLDE Collaboration Spokesperson: M. Deicher Contact person: K. Johnston.
From: S.Y. Hu Y.C. Lee, J.W. Lee, J.C. Huang, J.L. Shen, W.
Growth and optical properties of II-VI self-assembled quantum dots
Spatial distributions in a cold strontium Rydberg gas Graham Lochead.
CVD Diamond Sensors for the Very Forward Calorimeter of a Linear Collider Detector K. Afanaciev, E. Kouznetsova, W. Lange, W. Lohmann.
Ultrafast Carrier Dynamics in Single-Walled Carbon Nanotubes Friday, August 27, 2004 Yusuke Hashimoto Dept. of ECE, Rice University, Houston, USA Graduate.
Luminescent Properties of ZnO and ZnO:Ce Thin-Films Manuel García-Méndez
Terahertz Charge Dynamics in Semiconductors James N. Heyman Macalester College St. Paul, MN.
Direct Observation of Polariton Waveguide in ZnO nanowire at Room Temperature motivation abstract We report the direct experimental evidence of polariton.
ZnO appropriate optical dispersion law
Luminescent Periodic Microstructures for Medical Applications
Absorbtion FTIR: Fourier transform infrared spectroscopy
Centro de Investigación y de Estudios Avanzados del Institúto Politécnico Nacional (Cinvestav IPN) Palladium Nanoparticles Formation in Si Substrates from.
Fabrication of GaAs nanowires for solar cell devices
Optical and Terahertz Spectroscopy of CdSe/ZnS Quantum Dots
Characterization of Thin Films
Thermal diffusivity measurement on Nb by
Image-potential States in Carbon Nanotubes
Exciton Polariton Waveguide in ZnO Nanorod
Presentation transcript:

Size-dependent recombination dynamics in ZnO nanowires J. S. Reparaz1, M. R. Wagner1, A. Hoffmann1, F. Güell2, A. Cornet3, and J. R. Morante2,3 1Institut für Festkörperphysik, Technische Universität Berlin, Germany. 2MIND & M-2E, IN2UB, Departament d’Electrònica, Universitat de Barcelona, Spain. 3Institut de la Recerca de l’Energia de Catalunya (IREC), Barcelona, Spain.

Outline I) Motivation II) Growth procedure III) Optical investigation on NWs with different diameters IV) Single-wire spectroscopy V) Conclusions

Briefly on some ZnO basic properties Band structure  direct bandgap Wurtzite structure  4 at. / cell CB Γ7 Γ7 3.3 eV A Γ9 B Γ7 C * Growth techniques Optical Properties rf. magnetron sputtering Pulsed laser deposition Free excitons (FE) Bound excitons (BE) Donor acceptor pairs (DAP) Two electron satelites Phonon replicas Molecular beam epitaxy Chemical vapour deposition * M. R. Wagner et. al. , PRB 80, 205203 (2009)

I) Motivation Lowest dimensional system suitable for conductivity measurements Non-toxic and highly bio-compatible The electronic states in the NWs core are sensitive to the surface states C. Lao et. al., Nanoletters 7, 1323 (2008) Theoretically Single – wire PL spectra Size-dependent exciton-polariton coupling ΔωLTBulk ≈ 2 to 12 meV ΔωLTNWs ≈ 60 to 164 meV !!! B. Gil and A. V. Kavokin, Appl. Phys. Lett., Vol. 81, 748 (2002) L. K. Van Vugt. et. Al, Phys. Rev. Lett 97, 147401 (2006)

“The active media is the cavity itself” Can we learn something on size-dependent polariton fields in the NWs??

II) ZnO NWs growth SEM images – Three samples Vapour-liquid-solid d = 70 nm d = 110 nm d = 170 nm SiO2/Si substrate Au deposition Au drops formation ( ≈ 900 ºC) HRTEM images ZnO atmosphere NWs nucleation NWs growth

III) Results & Experimental Setup Beam Splitter Ti:Sa LBO CCD Spectrom. 70 nm Pulsed: 2 ps 355 nm Piezo XYZ MCP 63x He Anti- vibrations system Sample Cryostat High spatial resolution 1) 50 x objective  500 nm 2) Piezo-XYZ stage  50 nm 3) Horizontally aligned NWs Pump

Photoluminescence spectra FX BX Room temperature - Free exciton hν Acceptors VB Low temperatures - Free exciton - Bound excitons - Surface excitons - Free to bound - DAP - Two electron satelites

Photoluminescence spectra DX=3.365 eV observed in all the samples We use this DX to study the NWs diameter Influence on the e.m. filed inside the NWs J. S. Reparaz, M. Wagner, A. Hofmann, et. al., Appl. Phys. Lett., 96, 053105 (2010)

Time resolved spectra BULK (λ << d) NW (d < λlight) The DX are spatially localized states !!! BULK (λ << d) Plane wave E=E0exp(-ikr-wt) NW (d < λlight) i) The NWs shape influences the polaritons field ii) Emission from excitons in different spatial positions in the NWs influence the recombination times. The different lifetimes probe the influence of the NWs size on the e.m. field inside the NWs.

Lifetime vs. NWs diameter J. S. Reparaz, M. Wagner, A. Hofmann, et. al., unpublished (2010) The lifetime of the DX excitons increases approximatelly linearly with NWs diameter. This results from the influence of the NWs size on the e.m. field spatial distribution

On the precursor influence…

V) Single-wire spectroscopy PL spectra PL mapscan

V) Single-wire spectroscopy PL spectra PL mapscan Sub-wavelength polariton guiding

V) Single-wire spectroscopy Time resolved spectra PL mapscan Cavity modes Coupling to the external e.m. field The lifetime depends on the position on the NWs. We observe the presence of a ZnO WL.

VI) Conclusions The DX recombination times have shown to be an useful tool for proving the size influence on the e.m. field inside ZnO NWs. The lifetime of the neutral donor bound excitons depends on the NWs size  size-dependent polariton field. We find an approximately linear relation for the investigated sizes. Single-wire spectroscopy has revealed that the recombination dynamics depend on the position on the NWs, decreasing closer to the tip The presence of a ZnO WL was observed by studying single NWs.

Thank you !!  Come down you messy cat !!!