Missing Resonances and Beyond Ken Livingston, University of Glasgow, Scotland Nucleon resonances and complete measurements Missing nucleon resonances.

Slides:



Advertisements
Similar presentations
Introduction. November 2002 Good News House Senate.
Advertisements

Günther Rosner EUROHORC/NuPECC, Paris, 29/11/04 1 Hadron Structure & Spectroscopy Experimental frontiers: High precision High intensity Theoretical symbiosis:
Measuring the Neutron and 3 He Spin Structure at Low Q 2 Vincent Sulkosky for the JLab Hall A Collaboration College of William and Mary, Williamsburg VA.
Experiments with Real Photons at CLAS Crystal Ball Collaboration Meeting, Basel 2006 Experiments with real photons at CLAS Ken Livingston University of.
Recent Results from the Programme at the Glasgow Tagged Photon Spectrometer in Mainz E. J. Downie University of Glasgow.
Experiments with Real Photons at CLAS Crystal Ball Collaboration Meeting, Basel 2006 Experiments with real photons at CLAS Ken Livingston University of.
Polarisation Observables for Strangeness Photoproduction on a Frozen Spin Target with CLAS at Jefferson Lab Stuart Fegan Nuclear Physics Group University.
Polarization Observables in Hyperon Photoproduction with CLAS Craig Paterson University of Glasgow Eurotag Workshop Glasgow, 1 st September 2008.
Jefferson Lab and the 12GeV Upgrade Nuclear Physics UK Community Meeting Coseners House 11 th & 12 th June 2009 Ken Livingston, University of Glasgow Overview.
JRA3 Eurotag report, Oct Eurotag Development of the European tagged photon facilities. Spokesperson: Ken Livingston, Glasgow Members: Glasgow, Bonn,
CHL-2 Enhance equipment in existing halls Add new hall Jefferson Lab, latest results and the 12GeV Upgrade Ken Livingston, University of Glasgow. Nuclear.
Carsten Schwarz KP2 Physics with anti protons at the future GSI facility Physics program Detector set-up p e - coolerdetector High Energy Storage.
Introduction Glasgow’s NPE research Group uses high precision electromagnetic probes to study the subatomic structure of matter. Alongside this we are.
16 March 2009 EuNPC, Bochum 0 Kaon Photoproduction Results from CLAS D. G. Ireland.
JRA3 Eurotag report, Dec Eurotag Development of the European tagged photon facilities. Spokesperson: Ken Livingston, Glasgow Members: Glasgow, Bonn,
Eurotag Development of the European Tagged photon facilities. Spokesperson: Ken Livingston, Glasgowurl: Upgrade to 250MeV.
Eurotag Development of the European Tagged photon facilities. Spokesperson: Ken Livingston, Glasgowurl: Upgrade to 250MeV.
G measurement at Ken Livingston, University of Glasgow, Scotland Slides from: Ken Livingston: Various talks at -
Eurotag Workshop Sept 1 st - 2 nd 2008 Ken Livingston, University of Glasgow Overview of I3HP, JRA, Eurotag Summary of Eurotag objectives Aims of this.
Baryon spectroscopy at CLAS and CLAS12 Baryons’10, Dec 2010, Osaka, Japan Ken Livingston, University of Glasgow, Scotland For the CLAS collaboration Hadron.
Measurement of the  n(p)  K +   (p) at Jefferson Lab Sergio Anefalos Pereira Laboratori Nazionali di Frascati.
C x and C x for K + Λ and K +  o Photo-production R. Bradford Department of Physics and Astronomy, University of Rochester R. Schumacher Department of.
 *(1520) CrossSection Zhiwen Zhao Physics 745. Λ BARYONS (S = − 1, I = 0) Λ 0 = u d s Λ(1520) D 03 I( J P ) = 0( 3/2 − ) Mass m = ± 1.0 MeV [a]
BONUS (Barely Off-Shell Nucleon Structure) Experiment Update Thia Keppel CTEQ Meeting November 2007.
Study of two pion channel from photoproduction on the deuteron Lewis Graham Proposal Phys 745 Class May 6, 2009.
Proton polarization measurements in π° photo-production --On behalf of the Jefferson Lab Hall C GEp-III and GEp-2γ collaboration Wei Luo Lanzhou University.
Eugene Pasyuk Jefferson Lab for the CLAS Collaboration Moscow, September 20-23, 2012 XIII International Seminar on Electromagnetic Interactions of Nuclei.
Proton polarization measurements in π° photo- production --on behalf of the Jefferson Lab Hall C GEp-III and GEp-2 γ collaboration 2010 Annual Fall Meeting.
T.C. Jude D.I. Glazier, D.P. Watts The University of Edinburgh Strangeness Photoproduction: Polarisation Transfer & Cross-Section Measurements.
Polarisation transfer in hyperon photoproduction near threshold Tom Jude D I Glazier, D P Watts The University of Edinburgh.
T.C. Jude D.I. Glazier, D.P. Watts The University of Edinburgh Strangeness Photoproduction At Threshold Energies.
Crystal Ball Experiment at MAMI Recent Results W.J. Briscoe for the A2 Collaboration (thanks for the sabbatical support) MESONS 2010 SFB443.
Status of the recoil nucleon polarimeter Dan Watts, Derek Glazier, Mark Sikora (SUPA PhD student) (University of Edinburgh, UK)
M. Dugger, Jlab User Meeting, June First data with FROST First data with FROST Michael Dugger* Arizona State University *Work at ASU is supported.
Recoil Polarimetry in Meson Photoproduction at MAMI Mark Sikora, Derek Glazier, Dan Watts School of Physics, University of Edinburgh, UK Introduction The.
UK Hadron Physics D. G. Ireland 10 October 2014 NuPECC Meeting, Edinburgh.
K +  photoproduction with the Crystal Ball at MAMI T.C. Jude The University of Edinburgh New method of K + detection with the Crystal Ball Extraction.
Graphic from poster by Sarah Lamb, UConn Honors Program event Frontiers in Undergraduate Research, April 2009 Collimator subtends
First Results of Curtis A. Meyer GlueX Spokesperson.
Motivation. Why study ground state hyperon electroproduction? CLAS detector and analysis. Analysis results. Current status and future work. M. Gabrielyan.
Hadron physics Hadron physics Challenges and Achievements Mikhail Bashkanov University of Edinburgh UK Nuclear Physics Summer School I.
Baryon Spectroscopy from JLab D. G. Ireland 17 September 2015 Hadron2015, Newport News, Virginia USA.
Jefferson Lab and the 12GeV Upgrade Nuclear Physics UK Community Meeting Cosener’s House 11 th & 12 th June 2009 Ken Livingston, University of Glasgow.
09/10/2005NSTAR Graal collaboration1 The Graal collaboration results and prospects Presented by Carlo Schaerf Università di Roma “Tor Vergata” and.
Sub-Nucleon Physics Programme Current Status & Outlook for Hadron Physics D G Ireland.
Recent progress in N* physics from Kaon photoproduction experiments at CLAS using polarization observabes. The Rutherford Centennial Conference on Nuclear.
Baryon spectroscopy at CLAS and CLAS12 Baryons’10, Dec 2010, Osaka, Japan Ken Livingston, University of Glasgow, Scotland For the CLAS collaboration Hadron.
Dan Watts (Edinburgh), Igor Strakovsky (GWU) and the CLAS Collaboration Daria Sokhan New Measurement of Beam Asymmetry from Pion Photoproduction on the.
Photoproduction and Decays of Pseudoscalar Mesons in CLAS
Photo-production of strange mesons with polarized photons and targets Eugene Pasyuk Jefferson Lab XIV International Seminar on Electromagnetic Interactions.
Λ and Σ photoproduction on the neutron Pawel Nadel-Turonski The George Washington University for the CLAS Collaboration.
Dihadron production at JLab Sergio Anefalos Pereira (INFN - Frascati)
Baryon spectroscopy: recent Kaon photoproduction results from CLAS EINN2009, Sep2009, Milos Island, Greece Ken Livingston, University of Glasgow Motivation.
Kaon Production on the Nucleon D. G. Ireland MENU Rome, September 30 – October 4, 2013.
09/10/2005NSTAR Graal collaboration1 The Graal collaboration results and prospects Presented by Carlo Schaerf Università di Roma “Tor Vergata” and.
Status of Beam Asymmetry Measurements for Meson Photoproduction ASU Meson Physics Group Hadron Spectroscopy WG Meeting – June 2009 Status of Beam Asymmetry.
HLAB meeting paper 2011/1/18 T.Gogami CLAS ( CEBAF Large Acceptance Spectrometer ) Clam shell is open.
Polarisation transfer in hyperon photoproduction near threshold Tom Jude D I Glazier, D P Watts The University of Edinburgh.
July 10, 2006TAPS 2006 Experimental Hall-D and the GlueX Experiment at Jefferson Lab Dr. David Lawrence Jefferson Lab Dr. David Lawrence Jefferson Lab.
Overview of recent photon beam runs at CLAS CLAS12 European Workshop, Feb , Genoa, Italy Ken Livingston, University of Glasgow Tagged photons.
Polarisation Observables for Strangeness Photoproduction on a Frozen Spin Target with CLAS at Jefferson Lab Stuart Fegan Nuclear Physics Group University.
Timelike Compton Scattering at JLab
A compact pair polarimeter and spectrometer
CLAS, Hall-B Tagged linear and circularly polarised photons
Experiments with Linearly Polarized Photons at CLAS Ken Livingston University of Glasgow and The CLAS Collaboration Motivation * * * * Linear polarization.
Overview of recent photon beam runs at CLAS
Plans for nucleon structure studies at PANDA
Samples of Hall B Results with Strong Italian Impact
Michael Dugger* Arizona State University
Proposal for an Experiment: Photoproduction of Neutral Kaons on Deuterium Spokespersons: D. M. Manley (Kent State University) W. J. Briscoe (The George.
Presentation transcript:

Missing Resonances and Beyond Ken Livingston, University of Glasgow, Scotland Nucleon resonances and complete measurements Missing nucleon resonances Jefferson Lab and the N* programme at CLAS Hyperon results and status of N* The future The Jefferson Lab 12GeV upgrade Future facilities – EIC, ESS, ELI SCAPA

Clear indication of resonances Broad and overlapping Below energy regime of PQCD Constituent quark models SU(6) x O(3) Eg. Forsyth & Cutkosky, Koniuk & Isgur, Capstick & Roberts Missing resonances γp cross section: World Data Most data is from πN scattering and single π photoproduction. Cross sections are not enough – need angular distributions and polarization observables. Hyperons (nucleons with strange quark) are promising (    and      With D 13 Without D 13 Mart & Benhold, Phys. Rev. C (R) (1999) Constituent quark models predict many resonances, but several missing. Are they wrongly predicted, or difficult to find experimentally?

Polarization observables in pseudoscalar (0 - ) meson production 4 Complex amplitudes: 16 real polarization observables. Complete, model independent, measurement from 8 carefully chosen observables. I. S. Barker, A. Donnachie, J. K. Storrow, Nucl. Phys. B (1975). πN: high statistics KY recoil: self-analysing () Systematics of detector acceptance cancel out. Only need to know P lin, the degree of linear polarization.

A B C Continuous Electron Beam Accelerator Facility  E: 0.75 –6 GeV  I max : 200A  RF: 1499 MHz  Duty Cycle:  100%  (E)/E: 2.5x10 -5  Polarization: 80%  Simultaneous distribution to 3 experimental Halls Injector LINAC Experimental Halls Jefferson Lab, Virginia, USA TAGGER

CEBAF Large Acceptance Spectrometer Cherenkov Counter e/ separation, 256 PMTs Time of Flight Plastic Scintillator, 684 PMTs Drift Chamber 35,000 cells Target +  start counter e mini-torus Electromagnetic Calorimeter lead/plastic scintillator, 1296 PMTs Torus Magnet 6 Superconductive Coils

EeEe E e’ E  = E e - E e’ 11m Amorphous radiator Diamond radiator up to 90% linear polarization EeEe Diamonds Need to be “perfect” monocrystals Assessment difficult and expensive  Tagger in Intregrating mode …. Could we do this at SCAPA? Hall B Photon Tagger and Coherent Bremsstrahlung

Polarization observables at CLAS  + N →  m Linear Polarisation Circular polarisation Nucleon recoil polarimiter x → Y  Hyperons are “self analysing” Transverse polarized nucleon targets p n Longitudinally polarized nucleon targets p n Crystal Ball MAMI, D.Watts, Edinburgh.

  Single polarization observables  Photon asymmetry P Recoil polarization (induced pol. along y) T Target asymmetry Double polarization observables O x Polarization transfer along x O z Polarization transfer along z Polarization observables in  + p → K + Y (Lin Pol Beam, LH 2 target) Craig Paterson, Glasgow

Polarization observables in  + p → K + Y (Lin Pol Beam, LH 2 target) Craig Paterson, Glasgow Good agreement with previous data. Better statistics Many more bins in CM angle and Energy. Photon Asymmetry  + p → K +  Double Pol Obs C x for  + p → K +  Gent Regge + Resonance Model ( Corthals et al. Phys Rev C ) Data + Regge background (R) R + core resonances (C) R + C + D 13 (1900) __________ R + C + P 11 (1900) __ __ __ __ Cos (θ cm ) K

Detect  - n, K + Σ from  - n inv. mass Sergio Anefalos Pereira, INFN. Phys. Lett. B 688 (2010) CLAS Data ▲ LEPS _____ Gent RPR model Edwin Munevar, GWU PRELIMINARY Polarization observables in  + n → K + Y (Lin Pol Beam, LD 2 target)  n (p)   s    p   n (p)   s    p   st measurements  P, T, Ox,Oz PRELIMINARY Neil Hassall, Glasgow

Status of N* program - complete measurementsσΣTPEFGH TxTxTxTx TzTzTzTz LxLxLxLx LzLzLzLz OxOxOxOx OzOzOzOz CxCxCxCx CzCzCzCz Proton target pπ 0 ✔✓✓✓✓✓✓ nπ + ✔✓✓✓✓✓✓ pη✔✓✓✓✓✓✓ pη’✔✓✓✓✓✓✓ pω✔✓✓✓✓✓✓ K+ΛK+ΛK+ΛK+Λ✔✓✓✔✓✓✓✓✓✓✓✓✓✓✔✔ K+Σ0K+Σ0K+Σ0K+Σ0✔✓✓✔✓✓✓✓✓✓✓✓✓✓✔✔ K 0* Σ + ✔✓✓✓ Neutron target pπ - ✔✓✓✓✓✓✓ pρ - ✓✓✓✓✓✓✓ K-Σ+K-Σ+K-Σ+K-Σ+✓✓✓✓✓✓✓ K0ΛK0ΛK0ΛK0Λ✓✓✓✓✓✓✓✓✓✓✓✓✓✓✓✓ K0Σ0K0Σ0K0Σ0K0Σ0✓✓✓✓✓✓✓✓✓✓✓✓✓✓✓✓ K 0* Σ 0 ✓✓ PhD awarded - S. Fegan FROST 2 new students – HDIce (running now)

Spin density matrix elements in bins ΔW = 10 MeV, for W = 1.7–2.4 GeV in blue - blue shades. Previous world data in red. Search for baryon states in γp ➝ pω ➝ pπ + π - (π 0 ) M. Williams, et al. (CLAS), Phys.Rev.C80:065208,2009 M. Williams, et al. (CLAS), Phys.Rev.C80:065209,2009 F 15 (2000)/G 17 (219 0) ω production is dominated by the well known F 15 (1680), D 13 (1700) and G 17 (2190), and a predicted “missing” F 15 (2000). Status of N* program

The JLab 12GeV upgrade (15min) CHL -2 Upgrade of the arc magnets Construction of the new Hall D Beam Power: 1MW Beam Current: 90 µA Max Pass energy: 2.2 GeV Max Enery Hall A-C: 10.9 GeV Max Energy Hall D: 12 GeV Upgrade of the instrumentation of the existing Halls

< 6 GeV Spectroscopy with CLAS12 Low Q Tagging Facility or Forward Tagger Electron scattering at “0” degrees (LowQ, post-target tagging): low Q 2 virtual photon  real photon Photons tagged by detecting the scattered electron Quasi-real photons are linearly polarized and the polarization can be determined event by event Highly segmented calorimiter BGO Opportunity to test / develop at SCAPA? Hadron spectroscopy Heavy mass baryon resonances (Cascades and  - ) Meson spectroscopy H target and search for exotics 4 He and other gas targets Focus on Generalized Parton Distributions

GlueX: Confinement and the search for QCD exotics Simplest quark-structure is a meson Confinement: Quarks cannot exist alone + = ( , K) J PC = 1 --, 1 ++ Hybrid Meson or , , , … ? + = ( ,  ) J PC = 0 -+, 1 -+, , 1 +-, 2 +- Exotic! Use a real photon beam Excite the glue: Study hybrid mesons G. Bali

GlueX: Confinement and the search for QCD exotics Glasgow: Diamond selection Coherent bremsstrahlung Polarimetry SCAPA ?

Wider context MAX IV EIC ? USA Sweden Romania Germany Sweden Scotland SCAPA 2020 Long standing Glasgow collaborations

SCAPA Scottish Centre for the Application of Plasma-based Accelerators “Harnessing plasma waves as radiation and particle sources” Dino Jaroszynski Laser Wakefield Acceleration Ultra-short, ultra-intense laser pulses from commercially available table-top terawatt femtosecond lasers. Electron bunches: Mean energy above 1 GeV, an energy spread of about 1% and a peak current exceeding 1 kA. Protons: Yes please

0.1 – 1 GeV    plasma filled capillary undulator 1 J 40 fs 800 nm wakefield accelerator 6.5 MeV photo- injector laser optical self-injection SCAPA ALPHA-X running now ~20fs Diamond Many of these make this SCAPA needs the expertise of nuclear physicists …. today! Beam characterization We already do this: Nature Physics 7, 867–871 (2011) D.Hamilton ++ Polarimetry Spectrometers and beam conditioning Detectors Data Acquisition / analysis SImluation Providing expertise opens many doors EDUCATION EDUCATION EDUCATION Undergraduates PhD students Young postdocs. Opportunities for nuclear physicists Detector development RF PMTs, GEMs, Diamond detectors Diamonds Quality assessment, channeling radiation, polarimetry Fundamentsl Hadron and Nuclear Physics Lifetime measurements The unknown, open doors to ESS, ELI Compact Muon Source (next slide) RF PMTs (J.Annand, Glasgow + Yerevan) ps timing resolution 500MHz rate capability

500L Compact Muon Source at SCAPA Assay of radioactive waste: Glasgow applied project with NNL There exists, somewhere, a large stockpile of barrels of unclassified radioactive waste. Need to determine the existence of high Z materials. Scattering of Muons. Muons from cosmic rays. Method is very promising. Rate of cosmic muons ~5Hz / m 2 Assay will take 10s of years not feasible. Need a muon beam

1 GeV 10Hz Wakefield accelerator Light solid target Brem radiator Magnetic element Simulated using Geant 4 and MAID2007, D. Hamilton, Glasgow Similar to method used at ISIS Rate Estimate Compact muons: ~9kHz / m 2 Compared to Cosmic muons ~5Hz / m 2 Compact Muon Source at SCAPA Compact, made from “standard components”. >10 3 rate increase over cosmics. Pion beam to do hadron physics (eg pion lifetime measurement with RF PMTs) Muon beam for materials science. γn ➝ pπ -   ➝      l = 7.8m)

Summary Missing Resonances Lots of progress internationally. Strangeness very important – 1 st complete measurement Next few years should see definitive results. Jlab 12 CLAS12 and GlueX Continuing spectroscopy Heavier baryons Hybrid mesons SCAPA Many new opportunities Physics Detector development Education Compact muon source

 p (n)      n  Russell Johnstone, Glasgow K production on n. Deuterium target PRELIMINARY photon asymmetry  How good a “free” neutron target is Deuterium ? G13. Compare photon asymmetry of  p (n)      n  with  p      (free and bound p)   × Free ● Quasi free Free and quasi-free proton Quasi free neutron good approx. to free, here. Cos  cm ( ) Each plot is 200MeV photon energy bin MeV

G13  n (p)   s     p  n (p)   s    p  Neil Hassall, Glasgow K production on n. Deuterium target

Tagging spectrometer with high rate, good energy and timing resolution High precision goniometer (GWU) High quality, thin diamond (Glasgow) Tight photon beam collimation (ISU) Polarimetry “A device called a goniometer tilts the diamond, much like a lady turning her hand to admire the sparkle of a new ring.” - JLAB On Target Magazine Peak > 90% pol. CLAS coherent bremsstrahlung facility Photon energy P > 90%

Measurements with photon beam profile detector D. Glazier, Glasgow 1 st Measurement of 2D photon enhancement for coherent bremsstrahlung (MAMI,Mainz) paper in preparation Good agreement with coherent bremstrahlung calculations Improvements in incoherent component, collimation + multiple scattering. No evidence of high energy photons from quasi channeling. Investigation of 2D strip detector for polarimetry Coherent peak at 300Mev, MAMI electron beam energy 855MeV below peakcoherent peakabove peak

   Photon Asymmetry, , extracted from cos(2  ) fit to azimuthal kaon distribution Fits shown for 1 energy bin 340 (20E, 17  ) kinematic bins Almost full angular coverage g8b preliminary results -   

g8b preliminary results -     Results compared with previous results from GRAAL 7, 50MeV Energy bins > 1475MeV Good agreement with previous results PRELIMINARY

Results compared with previous results from LEPS 6, 100MeV Energy bins > 2050MeV More bins for our data!!! Increase the angular coverage to backward angles PRELIMINARY g8b preliminary results -    

Use reaction with a known photon asymmetry Can be high statistics Very good relative monitor of polarization Combined beam, target polarization. Non-indpendent – depends on specific expt Need very good systematics or calibration Awaiting MAMI polarized target and polarised photon beam in 2 nd half of 2007 Polarimetry: from hadronic reaction R. Beck, Mainz -> Bonn Recent preliminary results from JLab (g8b)‏ Proton target Back to back charge particles in Start Counter Atomic or hardonic ? Asymmetry from ~20mins DAQ data Constant with E from 1.3GeV – 1.9GeV

Resonances Pythagoras (c. 500 B.C.) Notes on a string which sound harmonious have simple ratios. 1 st Resonance model Created a system for tuning instruments The 1st musical scale … and then the universe Music of the Spheres If there is insufficient data even the wackiest of models cannot be ruled out.