EC220 - Introduction to econometrics (chapter 8)

Slides:



Advertisements
Similar presentations
EC220 - Introduction to econometrics (chapter 2)
Advertisements

EC220 - Introduction to econometrics (chapter 1)
1 Although they are biased in finite samples if Part (2) of Assumption C.7 is violated, OLS estimators are consistent if Part (1) is valid. We will demonstrate.
EC220 - Introduction to econometrics (chapter 13)
ADAPTIVE EXPECTATIONS 1 The dynamics in the partial adjustment model are attributable to inertia, the drag of the past. Another, completely opposite, source.
EXPECTED VALUE RULES 1. This sequence states the rules for manipulating expected values. First, the additive rule. The expected value of the sum of two.
ADAPTIVE EXPECTATIONS: FRIEDMAN'S PERMANENT INCOME HYPOTHESIS
EC220 - Introduction to econometrics (chapter 14)
EC220 - Introduction to econometrics (chapter 11)
1 SIMULTANEOUS EQUATIONS MODELS Most of the issues relating to the fitting of simultaneous equations models with time series data are similar to those.
Christopher Dougherty EC220 - Introduction to econometrics (review chapter) Slideshow: the central limit theorem Original citation: Dougherty, C. (2012)
EC220 - Introduction to econometrics (chapter 2)
Christopher Dougherty EC220 - Introduction to econometrics (review chapter) Slideshow: probability distribution example: x is the sum of two dice Original.
EC220 - Introduction to econometrics (chapter 14)
EC220 - Introduction to econometrics (review chapter)
EC220 - Introduction to econometrics (chapter 11)
Christopher Dougherty EC220 - Introduction to econometrics (chapter 9) Slideshow: two-stage least squares Original citation: Dougherty, C. (2012) EC220.
EC220 - Introduction to econometrics (review chapter)
EC220 - Introduction to econometrics (chapter 8)
Christopher Dougherty EC220 - Introduction to econometrics (chapter 12) Slideshow: consequences of autocorrelation Original citation: Dougherty, C. (2012)
Christopher Dougherty EC220 - Introduction to econometrics (chapter 11) Slideshow: model c assumptions Original citation: Dougherty, C. (2012) EC220 -
Christopher Dougherty EC220 - Introduction to econometrics (chapter 8) Slideshow: model b: properties of the regression coefficients Original citation:
Christopher Dougherty EC220 - Introduction to econometrics (chapter 2) Slideshow: one-sided t tests Original citation: Dougherty, C. (2012) EC220 - Introduction.
Christopher Dougherty EC220 - Introduction to econometrics (review chapter) Slideshow: one-sided t tests Original citation: Dougherty, C. (2012) EC220.
EC220 - Introduction to econometrics (chapter 1)
Christopher Dougherty EC220 - Introduction to econometrics (chapter 8) Slideshow: Friedman’s critique of OLS estimation of the consumption function Original.
THE ERROR CORRECTION MODEL 1 The error correction model is a variant of the partial adjustment model. As with the partial adjustment model, we assume a.
1 MAXIMUM LIKELIHOOD ESTIMATION OF REGRESSION COEFFICIENTS X Y XiXi 11  1  +  2 X i Y =  1  +  2 X We will now apply the maximum likelihood principle.
MODELS WITH A LAGGED DEPENDENT VARIABLE
EC220 - Introduction to econometrics (chapter 3)
EC220 - Introduction to econometrics (chapter 4)
1 This very short sequence presents an important definition, that of the independence of two random variables. Two random variables X and Y are said to.
Christopher Dougherty EC220 - Introduction to econometrics (review chapter) Slideshow: exercise r.22 Original citation: Dougherty, C. (2012) EC220 - Introduction.
Christopher Dougherty EC220 - Introduction to econometrics (review chapter) Slideshow: exercise r.19 Original citation: Dougherty, C. (2012) EC220 - Introduction.
EC220 - Introduction to econometrics (review chapter)
Christopher Dougherty EC220 - Introduction to econometrics (review chapter) Slideshow: asymptotic properties of estimators: the use of simulation Original.
Christopher Dougherty EC220 - Introduction to econometrics (review chapter) Slideshow: expected value of a random variable Original citation: Dougherty,
Christopher Dougherty EC220 - Introduction to econometrics (review chapter) Slideshow: population variance of a discreet random variable Original citation:
EC220 - Introduction to econometrics (chapter 5)
The third sequence defined the expected value of a function of a random variable X. There is only one function that is of much interest to us, at least.
EC220 - Introduction to econometrics (chapter 5)
EC220 - Introduction to econometrics (chapter 10)
Christopher Dougherty EC220 - Introduction to econometrics (chapter 2) Slideshow: a Monte Carlo experiment Original citation: Dougherty, C. (2012) EC220.
Christopher Dougherty EC220 - Introduction to econometrics (chapter 2) Slideshow: types of regression model and assumptions for a model a Original citation:
1 ASSUMPTIONS FOR MODEL C: REGRESSIONS WITH TIME SERIES DATA Assumptions C.1, C.3, C.4, C.5, and C.8, and the consequences of their violations are the.
Christopher Dougherty EC220 - Introduction to econometrics (review chapter) Slideshow: expected value of a function of a random variable Original citation:
Christopher Dougherty EC220 - Introduction to econometrics (review chapter) Slideshow: confidence intervals Original citation: Dougherty, C. (2012) EC220.
EC220 - Introduction to econometrics (review chapter)
Christopher Dougherty EC220 - Introduction to econometrics (chapter 3) Slideshow: prediction Original citation: Dougherty, C. (2012) EC220 - Introduction.
Cross-sectional:Observations on individuals, households, enterprises, countries, etc at one moment in time (Chapters 1–10, Models A and B). 1 During this.
Christopher Dougherty EC220 - Introduction to econometrics (chapter 10) Slideshow: maximum likelihood estimation of regression coefficients Original citation:
Christopher Dougherty EC220 - Introduction to econometrics (review chapter) Slideshow: the normal distribution Original citation: Dougherty, C. (2012)
EC220 - Introduction to econometrics (review chapter)
Christopher Dougherty EC220 - Introduction to econometrics (review chapter) Slideshow: sampling and estimators Original citation: Dougherty, C. (2012)
Christopher Dougherty EC220 - Introduction to econometrics (chapter 12) Slideshow: autocorrelation, partial adjustment, and adaptive expectations Original.
THE DUMMY VARIABLE TRAP 1 Suppose that you have a regression model with Y depending on a set of ordinary variables X 2,..., X k and a qualitative variable.
Christopher Dougherty EC220 - Introduction to econometrics (review chapter) Slideshow: conflicts between unbiasedness and minimum variance Original citation:
Christopher Dougherty EC220 - Introduction to econometrics (chapter 8) Slideshow: measurement error Original citation: Dougherty, C. (2012) EC220 - Introduction.
THE FIXED AND RANDOM COMPONENTS OF A RANDOM VARIABLE 1 In this short sequence we shall decompose a random variable X into its fixed and random components.
EC220 - Introduction to econometrics (chapter 8)
Christopher Dougherty EC220 - Introduction to econometrics (chapter 12) Slideshow: footnote: the Cochrane-Orcutt iterative process Original citation: Dougherty,
A.1The model is linear in parameters and correctly specified. PROPERTIES OF THE MULTIPLE REGRESSION COEFFICIENTS 1 Moving from the simple to the multiple.
Christopher Dougherty EC220 - Introduction to econometrics (chapter 9) Slideshow: instrumental variable estimation: variation Original citation: Dougherty,
Christopher Dougherty EC220 - Introduction to econometrics (chapter 6) Slideshow: multiple restrictions and zero restrictions Original citation: Dougherty,
1 We will now look at the properties of the OLS regression estimators with the assumptions of Model B. We will do this within the context of the simple.
Christopher Dougherty EC220 - Introduction to econometrics (review chapter) Slideshow: alternative expression for population variance Original citation:
Christopher Dougherty EC220 - Introduction to econometrics (chapter 2) Slideshow: confidence intervals Original citation: Dougherty, C. (2012) EC220 -
Christopher Dougherty EC220 - Introduction to econometrics (review chapter) Slideshow: independence of two random variables Original citation: Dougherty,
Christopher Dougherty EC220 - Introduction to econometrics (chapter 1) Slideshow: simple regression model Original citation: Dougherty, C. (2012) EC220.
Introduction to Econometrics, 5th edition
Presentation transcript:

EC220 - Introduction to econometrics (chapter 8) Christopher Dougherty EC220 - Introduction to econometrics (chapter 8) Slideshow: stochastic regressors and assumptions for model b   Original citation: Dougherty, C. (2012) EC220 - Introduction to econometrics (chapter 8). [Teaching Resource] © 2012 The Author This version available at: http://learningresources.lse.ac.uk/134/ Available in LSE Learning Resources Online: May 2012 This work is licensed under a Creative Commons Attribution-ShareAlike 3.0 License. This license allows the user to remix, tweak, and build upon the work even for commercial purposes, as long as the user credits the author and licenses their new creations under the identical terms. http://creativecommons.org/licenses/by-sa/3.0/   http://learningresources.lse.ac.uk/

STOCHASTIC REGRESSORS AND ASSUMPTIONS FOR MODEL B B.1 The model is linear in parameters and correctly specified. Y = b1 + b2X2 + … + bkXk + u B.2 The values of the regressors are drawn randomly from fixed populations B.3 There does not exist an exact linear relationship among the regressors B.4 The disturbance term has zero expectation Until now we have assumed that the explanatory variables in a regression model are nonstochastic, that is, that they do not have random components. We have done this to simplify the analysis of the properties of the regression estimators. 1

STOCHASTIC REGRESSORS AND ASSUMPTIONS FOR MODEL B B.1 The model is linear in parameters and correctly specified. Y = b1 + b2X2 + … + bkXk + u B.2 The values of the regressors are drawn randomly from fixed populations B.3 There does not exist an exact linear relationship among the regressors B.4 The disturbance term has zero expectation We will now progress to Model B and the case of stochastic regressors, where the values of the regressors are assumed to be drawn randomly from defined populations. This is a much more realistic framework for regressions with cross-sectional data. 2

STOCHASTIC REGRESSORS AND ASSUMPTIONS FOR MODEL B B.1 The model is linear in parameters and correctly specified. Y = b1 + b2X2 + … + bkXk + u B.2 The values of the regressors are drawn randomly from fixed populations B.3 There does not exist an exact linear relationship among the regressors B.4 The disturbance term has zero expectation We will begin by re-stating the regression model assumptions and we will then review the properties of the modified model. 3

STOCHASTIC REGRESSORS AND ASSUMPTIONS FOR MODEL B B.1 The model is linear in parameters and correctly specified. Y = b1 + b2X2 + … + bkXk + u B.2 The values of the regressors are drawn randomly from fixed populations B.3 There does not exist an exact linear relationship among the regressors B.4 The disturbance term has zero expectation Assumption B.1 is the same as A.1. 4

STOCHASTIC REGRESSORS AND ASSUMPTIONS FOR MODEL B B.1 The model is linear in parameters and correctly specified. Y = b1 + b2X2 + … + bkXk + u B.2 The values of the regressors are drawn randomly from fixed populations B.3 There does not exist an exact linear relationship among the regressors B.4 The disturbance term has zero expectation The values of the regressors in the observations in the sample are drawn randomly from fixed populations with finite means and finite population variances. In Model A we simply assumed that their values were fixed and given, with no further explanation. 5

STOCHASTIC REGRESSORS AND ASSUMPTIONS FOR MODEL B B.1 The model is linear in parameters and correctly specified. Y = b1 + b2X2 + … + bkXk + u B.2 The values of the regressors are drawn randomly from fixed populations B.3 There does not exist an exact linear relationship among the regressors B.4 The disturbance term has zero expectation Note that we do not assume that the regressors are independent of each other. On the contrary, we allow their populations to have joint probability distributions and as a consequence their sample values may be correlated. 6

STOCHASTIC REGRESSORS AND ASSUMPTIONS FOR MODEL B B.1 The model is linear in parameters and correctly specified. Y = b1 + b2X2 + … + bkXk + u B.2 The values of the regressors are drawn randomly from fixed populations B.3 There does not exist an exact linear relationship among the regressors B.4 The disturbance term has zero expectation This is the counterpart of Assumption A.2. Note that if there is a constant in the model, the assumption includes a requirement that there be some variation in each of the regressors. 7

STOCHASTIC REGRESSORS AND ASSUMPTIONS FOR MODEL B B.1 The model is linear in parameters and correctly specified. Y = b1 + b2X2 + … + bkXk + u B.2 The values of the regressors are drawn randomly from fixed populations B.3 There does not exist an exact linear relationship among the regressors B.4 The disturbance term has zero expectation Strictly speaking, this is a population assumption. However, as a practical matter, it must also be satisfied by the data in a sample. Otherwise there would be exact multicollinearity and it would be impossible to obtain estimates of the parameters of the model. 8

STOCHASTIC REGRESSORS AND ASSUMPTIONS FOR MODEL B B.1 The model is linear in parameters and correctly specified. Y = b1 + b2X2 + … + bkXk + u B.2 The values of the regressors are drawn randomly from fixed populations B.3 There does not exist an exact linear relationship among the regressors B.4 The disturbance term has zero expectation Note that if there is a constant in the model, the assumption includes a requirement that there be some variation in each of the regressors. 9

STOCHASTIC REGRESSORS AND ASSUMPTIONS FOR MODEL B B.1 The model is linear in parameters and correctly specified. Y = b1 + b2X2 + … + bkXk + u B.2 The values of the regressors are drawn randomly from fixed populations B.3 There does not exist an exact linear relationship among the regressors B.4 The disturbance term has zero expectation This is the same as Assumption A.3. 10

STOCHASTIC REGRESSORS AND ASSUMPTIONS FOR MODEL B B.5 The disturbance term is homoscedastic. B.6 The values of the disturbance term have independent distributions B.7 The disturbance term is distributed independently of the regressors B.8 The disturbance term has a normal distribution This is the same as Assumption A.4. 11

STOCHASTIC REGRESSORS AND ASSUMPTIONS FOR MODEL B B.5 The disturbance term is homoscedastic. B.6 The values of the disturbance term have independent distributions B.7 The disturbance term is distributed independently of the regressors B.8 The disturbance term has a normal distribution This is the same as Assumption A.5. 12

STOCHASTIC REGRESSORS AND ASSUMPTIONS FOR MODEL B B.5 The disturbance term is homoscedastic. B.6 The values of the disturbance term have independent distributions B.7 The disturbance term is distributed independently of the regressors B.8 The disturbance term has a normal distribution A new assumption. In Model A, the fact that the regressors had fixed nonstochastic values meant that it was impossible for there to be a distributional relationship between them and the disturbance term. Now that they have random components, the possibility arises. 13

STOCHASTIC REGRESSORS AND ASSUMPTIONS FOR MODEL B B.5 The disturbance term is homoscedastic. B.6 The values of the disturbance term have independent distributions B.7 The disturbance term is distributed independently of the regressors B.8 The disturbance term has a normal distribution We will see that a violation of this assumption has adverse consequences for the properties of the regression coefficients. Note that, as stated, it means that ui is distributed independently of the value of every regressor in every observation, not just observation i. 14

STOCHASTIC REGRESSORS AND ASSUMPTIONS FOR MODEL B B.5 The disturbance term is homoscedastic. B.6 The values of the disturbance term have independent distributions B.7 The disturbance term is distributed independently of the regressors B.8 The disturbance term has a normal distribution In practice with cross-sectional data it is usually reasonable to suppose that ui is distributed independently of Xji' for all i' ≠ i and so the condition reduces to ui being distributed independently of Xji. 15

STOCHASTIC REGRESSORS AND ASSUMPTIONS FOR MODEL B B.5 The disturbance term is homoscedastic. B.6 The values of the disturbance term have independent distributions B.7 The disturbance term is distributed independently of the regressors B.7' The disturbance term has zero conditional expectation E(ui │values of all the regressors in all observations) = 0 The condition can be weakened to the disturbance term having zero expectation conditional on the values of all the regressors in all the observations. 16

STOCHASTIC REGRESSORS AND ASSUMPTIONS FOR MODEL B B.5 The disturbance term is homoscedastic. B.6 The values of the disturbance term have independent distributions B.7 The disturbance term is distributed independently of the regressors B.7' The disturbance term has zero conditional expectation E(ui │values of all the regressors in all observations) = 0 Again, in practice with cross-sectional data it is usually reasonable to suppose that it is sufficient to condition on the values of the regressors in observation i only. 17

STOCHASTIC REGRESSORS AND ASSUMPTIONS FOR MODEL B B.5 The disturbance term is homoscedastic. B.6 The values of the disturbance term have independent distributions B.7 The disturbance term is distributed independently of the regressors B.8 The disturbance term has a normal distribution As with Model A, we need this assumption when we perform tests. 18

Copyright Christopher Dougherty 2011. These slideshows may be downloaded by anyone, anywhere for personal use. Subject to respect for copyright and, where appropriate, attribution, they may be used as a resource for teaching an econometrics course. There is no need to refer to the author. The content of this slideshow comes from Section 8.1 of C. Dougherty, Introduction to Econometrics, fourth edition 2011, Oxford University Press. Additional (free) resources for both students and instructors may be downloaded from the OUP Online Resource Centre http://www.oup.com/uk/orc/bin/9780199567089/. Individuals studying econometrics on their own and who feel that they might benefit from participation in a formal course should consider the London School of Economics summer school course EC212 Introduction to Econometrics http://www2.lse.ac.uk/study/summerSchools/summerSchool/Home.aspx or the University of London International Programmes distance learning course 20 Elements of Econometrics www.londoninternational.ac.uk/lse. 11.07.24