Nanocavities for measuring torque-actuated motion Marcelo Wu A. Hryciw, B. Khanaliloo, M. Freeman, J. Davis Supervisor: Paul Barclay University of Calgary/NRC-NINT.

Slides:



Advertisements
Similar presentations
Stefan Hild, Andreas Freise University of Birmingham Roland Schilling, Jerome Degallaix AEI Hannover January 2008, Virgo week, Pisa Advanced Virgo: Wedges.
Advertisements

Beyond The Standard Quantum Limit B. W. Barr Institute for Gravitational Research University of Glasgow.
1 T. Kataoka, S. E. Day, D. R. Selviah, A. Fernández Department of Electronic and Electrical Engineering University College London, U.K. Polarization-Insensitive.
Rotation Induced Super Structure in Slow-Light Waveguides w Mode Degeneracy Ben Z. Steinberg Adi Shamir Jacob Scheuer Amir Boag School of EE, Tel-Aviv.
Topological Insulators
Nanophotonics Class 3 Photonic Crystals. Definition: A photonic crystal is a periodic arrangement of a dielectric material that exhibits strong interaction.
Mechanical resonators towards quantum limit: NEMS group together with NANO, THEORY, KVANTTI Mika Sillanpää assoc. prof., team leader Juha-Matti Pirkkalainen.
from Coupled Quantum Modes Tim Liew & Vincenzo Savona
PROBING THE BOGOLIUBOV EXCITATION SPECTRUM OF A POLARITON SUPERFLUID BY HETERODYNE FOUR-WAVE-MIXING SPECTROSCOPY Verena Kohnle, Yoan Leger, Maxime Richard,
WP-M3 Superconducting Materials PArametric COnverter Detector INFN_Genoa Renzo Parodi.
The feasibility of Microwave- to-Optical Photon Efficient Conversion By Omar Alshehri Waterloo, ON Fall 2014
Aspects of Fused Silica Suspensions in Advanced Detectors Geppo Cagnoli University of Texas at Brownsville and TSC LIGO, Hanford.
Cooling a mechanical oscillator to its quantum ground state enables the exploration of the quantum nature and the quantum–classical boundary of an otherwise.
Aluminium Kinetic Inductance Detectors at 1.54 THz limited by photon noise and generation-recombination noise Pieter de Visser, Jochem Baselmans, Juan.
Slow light in photonic crystal waveguides Nikolay Primerov.
Lecture 8: Measurement of Nanoscale forces II. What did we cover in the last lecture? The spring constant of an AFM cantilever is determined by its material.
Extra Dimensions, Dark Energy and the Gravitational Inverse-Square Law ? Liam J. Furniss, Humboldt State University.
Agilent Technologies Optical Interconnects & Networks Department Photonic Crystals in Optical Communications Mihail M. Sigalas Agilent Laboratories, Palo.
Quantum Dot NanoCavity Emission Tuned by a Circular Photonic Crystal Lattice CNR-INFM Lecce (Italy) National Nanotechnology Lab Web:
Evidence for Quantized Displacement in Macroscopic Nanomechanical Oscillators CHEN, MU.
High-Q small-V Photonic-Crystal Microcavities
CERN VIBRATION SENSOR PROPOSAL The research leading to these results has received funding from the European Commission under the FP7 Research Infrastructures.
Koji Arai – LIGO Laboratory / Caltech LIGO-G v1.
TeV Particle Astrophysics August 2006 Caltech Australian National University Universitat Hannover/AEI LIGO Scientific Collaboration MIT Corbitt, Goda,
Recent Developments toward Sub-Quantum-Noise-Limited Gravitational-wave Interferometers Nergis Mavalvala Aspen January 2005 LIGO-G R.
Slide # 1 SPM Probe tips CNT attached to a Si probe tip.
GWADW, May 2012, Hawaii D. Friedrich ICRR, The University of Tokyo K. Agatsuma, S. Sakata, T. Mori, S. Kawamura QRPN Experiment with Suspended 20mg Mirrors.
GWADW 2010 in Kyoto, May 19, Development for Observation and Reduction of Radiation Pressure Noise T. Mori, S. Ballmer, K. Agatsuma, S. Sakata,
Overview of course Capabilities of photonic crystals Applications MW 3:10 - 4:25 PMFeatheringill 300 Professor Sharon Weiss.
Introduction to Nanomechanics (Spring 2012) Martino Poggio.
A. Monfardini, IAP 30/07/ NIKA (Néel IRAM KID Array) First light at the 30-m IRAM dish NIKA collaboration: - Institut Néel - Grenoble - AIG - Cardiff.
Interferometer Topologies and Prepared States of Light – Quantum Noise and Squeezing Convenor: Roman Schnabel.
Experiments towards beating quantum limits Stefan Goßler for the experimental team of The ANU Centre of Gravitational Physics.
Test mass dynamics with optical springs proposed experiments at Gingin Chunnong Zhao (University of Western Australia) Thanks to ACIGA members Stefan Danilishin.
Some of the applications of Photonic Crystals (by no means a complete overview) Prof. Maksim Skorobogatiy École Polytechnique de Montréal.
Workshop on High-Field THz Science High Power THz Generation and THz Field Enhancement in Nanostructures Fabian Brunner 1, Salvatore Bagiante 2, Florian.
Optomechanical Devices for Improving the Sensitivity of Gravitational Wave Detectors Chunnong Zhao for Australian International Gravitational wave Research.
Cooling mirrors with light Jack Harris, Yale University, PHY We have realized a new type of optomechanical coupling which allows us to greatly.
D. L. McAuslan, D. Korystov, and J. J. Longdell Jack Dodd Centre for Photonics and Ultra-Cold Atoms, University of Otago, Dunedin, New Zealand. Coherent.
Meet the transmon and his friends
Ultra-small mode volume, high quality factor photonic crystal microcavities in InP-based lasers and Si membranes Kartik Srinivasan, Paul E. Barclay, Matthew.
Chapter 2 Properties on the Nanoscale
LSC-March  LIGO End to End simulation  Lock acquisition design »How to increase the threshold velocity under realistic condition »Hanford 2k simulation.
Cold damping of fused silica suspension violin modes V.P.Mitrofanov, K.V.Tokmakov Moscow State University G Z.
NIRT: Semiconductor nanostructures and photonic crystal microcavities for quantum information processing at terahertz frequencies M. S. Sherwin and P.
Torsion Pendulum Dual Oscillator (TorPeDO) David McManus, Min Jet Yap, Robert Ward, Bram Slagmolen, Daniel Shaddock, David McClelland.
Applications of Photonic Crystals on Sensing Presentation for the lecture Photonic Crystals Zhaolu Diao Laboratory of Quantum Optoelectronics.
Solar chameleon detection at CAST Part II: The optical resonator Sauman Cheng and Manwei Chan.
All-Dielectric Metamaterials: A Platform for Strong Light-Matter Interactions Jianfa Zhang* (College of Optoelectronic Science and Engineering, National.
Optomechanics Experiments
High Q-factor Photonic Crystal Cavities on Transparent Polymers
Circuit QED Experiment
Beam Measurement Characterization and Optics Tolerance Analysis of a 900 GHz HEB receiver for the ASTE telescope Alvaro Gonzalez, K. Kaneko, Y. Uzawa.
Quantum Phase Transition of Light: A Renormalization Group Study
Overview of quantum noise suppression techniques
Scheme for Entangling Micromeccanical Resonators
Nergis Mavalvala Aspen January 2005
Yet another SQL? Tobias Westphal
Wavelength tunability in whispering gallery mode resonators
Tunable Electron Bunch Train Generation at Tsinghua University
Quantum noise reduction techniques for the Einstein telescope
Strong Coupling of a Spin Ensemble to a Superconducting Resonator
Advanced Optical Sensing
Sensitivity curves beyond the Advanced detectors
Tuning Interactions Between Quantum Dots and Cavities
Seismometer Development for the 1TeV Linear Collider
by A. Sipahigil, R. E. Evans, D. D. Sukachev, M. J. Burek, J
Tailor the Angular Dispersion of Metasurfaces
Fig. 2 Optomechanical scheme to measure photon angular momentum and optical torque in a waveguide. Optomechanical scheme to measure photon angular momentum.
Presentation transcript:

Nanocavities for measuring torque-actuated motion Marcelo Wu A. Hryciw, B. Khanaliloo, M. Freeman, J. Davis Supervisor: Paul Barclay University of Calgary/NRC-NINT CLEO 2012 – CW1M.7 - May 9, 12:15pm

Optomechanical coupling Yale: M. Bagheri et al., Nature Nanotechnology (2011) Parameters: g om : optomechanical coupling rate [Hz/nm] Mechanical properties: Q m, f m, m eff Optical properties: Q o, f o, V o

Optomechanical coupling 1) Lausanne/Max-Plack-Institut: E. Gavartin et al., arXiv: v1(2011) 2) Max-Plack-Institut/CeNS/Lausanne: G. Anetsberger et al., Nature Physics (2009) 3) NIST/Maryland: K. Srinivasan et al., Nano Letters (2011) 4) Yale/Columbia: Z. Sun et al., Nano Letters (2012) 5) Caltech: M. Eichenfield et al., Nature Letters 462 (2009) 6) Caltech: M. Eichenfield et al., Nature Letters 459 (2009) 7) Caltech: A. Safavi-Naeini et al., APL (2010) 8) Columbia: Y. Li et al., Optics Express (2010) 9) Tokyo: M. Nomura, Optics Express (2012) m eff = fg~pg g om → 1THz/nm

Torsional actuation Interaction between magnetic moments and fields at the nanoscale: constant magnetic field: no force, only torque!

Torsional actuation UofA: J. Davis et al., APL (2010) Yale: A. C. Bleszynski-Jayich et al., Science (2009) Example systems: Nanomagnetic fluctuations Persistent current measurements

Torsional actuation Queensland: S. Forstner et al., PRL (2012) Optical readout

Torsional actuation Our proposal Sensitive readout of torque Monolithic integration

Photonic crystal nanobeam cavity 1D photonic crystal cavity See also: Harvard: M.W. McCutcheon and M. Lončar, Optics Express (2008) Caltech: J. Chan et al., Optics Express (2009) Caltech: M. Eichenfield et al., Optics Express (2009) Caltech: A. H. Safavi-Naeini et al., PRL (2012) Harvard: P. Deotare et al., APL (2009) HP Labs: P.E. Barlcay, Optics Express (2009) Small V o Small mass Overlaps mechanical and optical modes

Photonic crystal nanobeam cavity Small form factor Acceptor mode optical cavity High Q-factor ~ 10 6 Small mode volume < (λ/n Si ) 3

Near-field mechanical resonator Trade-off: g om vs Q o

Floating paddle cavity Overlap mechanical and optical modes

Floating paddle cavity See also: Yale and LMU: J.C. Sankey et al., Nature Physics (2010) Vienna: Vanner, Physical Review X (2011) No optomechanical coupling in linear regime Membrane in the middle: Second order coupling Odd mechanical modes

Optomechanical design Still want large linear g om Want large Q o and maintain small m eff Natural mechanical modes are odd Caltech: M. Eichenfield et al., Optics Express (2009) Linear g om Quadratic g om Quadratic g om Linear g om

Split-beam cavity Donor mode cavity with gap at the centre E o1 E o2 For a gap size, find the dimensions of first ellipse

Split-beam cavity Optimization of ellipses: maximizing mirror strength 1 γ by varying (R x,R y ) 1 Q. Quan and M. Lončar Opt. Express (2011) A. Yariv and P. Yeh, Oxford University Press (2006)  at E o1 band edge  at E o2 band edge Mid-gap   at E o1 band edge at cavity centre

Split-beam cavity Optical properties Q total : 1.1 x 10 6 Q x : 2.3 x 10 8 Q y : 5.9 x 10 6 Q z : 1.3 x 10 6

Split-beam cavity Mechanical modes m eff = 0.5~1.1 pg g om = 5~17 GHz/nm Flexible design

Summary Optimized optical cavity High Q ~ 10 6 Mechanical modes suitable for torsional actuation Low m eff (0.5~1.1 pg) Flexible designs Large linear g om (5~17 GHz/nm)

Future work Optomechanical design Analysis of torsional actuation Actuation to readout: sensitivity and noise analysis Fabrication and measurement