30S Applied Math Mr. Knight – Killarney School Slide 1 Unit: Linear Programming Lesson 5: Problem Solving Problem Solving with Linear Programming Learning.

Slides:



Advertisements
Similar presentations
TWO STEP EQUATIONS 1. SOLVE FOR X 2. DO THE ADDITION STEP FIRST
Advertisements

Substitution.
Solving Systems of Equations by Substitution Objectives: Solve Systems of Equations using substitution. Solve Real World problems involving systems of.
Solve the system of inequalities by graphing. x ≤ – 2 y > 3
Linear Programming. Businesses use linear programming to find out how to maximize profit or minimize costs. Most have constraints on what they can use.
Do Now The cost of renting a pool at an aquatic center id either $30 an hr. or $20 an hr. with a $40 non refundable deposit. Use algebra to find for how.
3.4 Linear Programming.
Lesson 3-3 Ideas/Vocabulary
0 - 0.
Addition Facts
§ 4.5 Linear Programming.
Linear Programming, A Geometric Approach
1. The Problem 2. Tabulate Data 3. Translate the Constraints 4. The Objective Function 5. Linear Programming Problem 6. Production Schedule 7. No Waste.
8.6 Linear Programming. Linear Program: a mathematical model representing restrictions on resources using linear inequalities combined with a function.
C H 3 SEMESTER FINAL REVIEW. #1. F IND THE SOLUTION TO THE SYSTEM S.(3, 0) B.(2, 3) O. (.5, 7.5)
30S Applied Math Mr. Knight – Killarney School Slide 1 Unit: Linear Programming Lesson: Intro to Linear Programming Intro to Linear Programming Learning.
Addition 1’s to 20.
Test B, 100 Subtraction Facts
Solving Addition and Subtraction Inequalities
Use the substitution method
9.2 Absolute Value Equations and Inequalities
Sections 5.1 & 5.2 Inequalities in Two Variables
Linear Programming Vocabulary Linear Programming Objective Function Constraints.
1 Sections 5.1 & 5.2 Inequalities in Two Variables After today’s lesson, you will be able to graph linear inequalities in two variables. solve systems.
Lesson 7.6, page 767 Linear Programming
Linear Programming?!?! Sec Linear Programming In management science, it is often required to maximize or minimize a linear function called an objective.
Linear Programming Unit 2, Lesson 4 10/13.
Objectives: Set up a Linear Programming Problem Solve a Linear Programming Problem.
Linear Programming Digital Lesson. Copyright © by Houghton Mifflin Company, Inc. All rights reserved. 2 Linear programming is a strategy for finding the.
30S Applied Math Mr. Knight – Killarney School Slide 1 Unit: Linear Programming Lesson: Graphing Inequalities in Two Variables Graphing Inequalities in.
30S Applied Math Mr. Knight – Killarney School Slide 1 Unit: Systems of Linear Equations Lesson: SLE-L1 Intro to Systems of Linear Equations Find x 3(x.
30S Applied Math Mr. Knight – Killarney School Slide 1 Unit: Solving Systems Algebraically Lesson: SLE-L2 Solving Systems of Equations Algebraically Find.
40S Applied Math Mr. Knight – Killarney School Slide 1 Unit: Sinusoids Lesson: SIN-L4 Analyzing Sinusoidal Graphs Analyzing Sinusoidal Graphs Learning.
Copyright 2013, 2010, 2007, Pearson, Education, Inc. Section 7.6 Linear Programming.
P I can solve linear programing problem. Finding the minimum or maximum value of some quantity. Linear programming is a form of optimization where.
Solve problems by using linear programming.
Systems of Inequalities in Two Variables Sec. 7.5a.
Linear Programming Problem. Definition A linear programming problem is the problem of optimizing (maximizing or minimizing) a linear function (a function.
11C. Linear Programming. What is a linear programming problem? 1.A set of variables (in Further Maths there will only ever be two variables) called decision.
Linear Programming Advanced Math Topics Mrs. Mongold.
30S Applied Math Mr. Knight – Killarney School Slide 1 Unit: Linear Programming Lesson 4: The Feasible Region The Feasible Region Learning Outcome B-1.
Monday WARM-UP: TrueFalseStatementCorrected Statement F 1. Constraints are conditions written as a system of equations Constraints are conditions written.
3.4: Linear Programming Objectives: Students will be able to… Use linear inequalities to optimize the value of some quantity To solve linear programming.
Class Opener: Solve each equation for Y: 1.3x + y = y = 2x 3.x + 2y = 5 4. x – y = x + 3y = x – 5y = -3.
Warm-up Solve each system of equations:
Constraints Feasible region Bounded/ unbound Vertices
Warm-upWarm-up Sketch the region bounded by the system of inequalities: 1) 2) Sketch the region bounded by the system of inequalities: 1) 2)
LINEAR PROGRAMMING 3.4 Learning goals represent constraints by equations or inequalities, and by systems of equations and/or inequalities, and interpret.
3-5: Linear Programming. Learning Target I can solve linear programing problem.
Linear Programming. What is linear programming? Use a system of constraints (inequalities) to find the vertices of the feasible region (overlapping shaded.
3.3 Linear Programming. Vocabulary Constraints: linear inequalities; boundary lines Objective Function: Equation in standard form used to determine the.
Sullivan Algebra and Trigonometry: Section 12.9 Objectives of this Section Set Up a Linear Programming Problem Solve a Linear Programming Problem.
Chapter 3 Section 4 Linear Programming Algebra 2 January 29, 2009.
1. What does a need to be if there were infinitely many solutions to the system of equations. y + 2x = 12 2y + 4x = 2a.
Linear Programming Chapter 3 Lesson 4 Vocabulary Constraints- Conditions given to variables, often expressed as linear inequalities. Feasible Region-
2.7 Linear Programming Objectives: Use linear programming procedures to solve applications. Recognize situations where exactly one solution to a linear.
Digital Lesson Linear Programming.
Digital Lesson Linear Programming.
Math 1 Warm Up In the Practice Workbook… Practice 7-6 (p. 94)
ALGEBRA II HONORS/GIFTED SECTION 3-4 : LINEAR PROGRAMMING
Solve a system of linear equation in two variables
3-3 Optimization with Linear Programming
Linear Programming Objectives: Set up a Linear Programming Problem
Copyright © 2014, 2010, 2007 Pearson Education, Inc.
LINEARPROGRAMMING 4/26/2019 9:23 AM 4/26/2019 9:23 AM 1.
Nature does nothing uselessly.
Section Linear Programming
1.6 Linear Programming Pg. 30.
Linear Programming Mr. Carpenter Alg. 2.
Linear Programming.
Presentation transcript:

30S Applied Math Mr. Knight – Killarney School Slide 1 Unit: Linear Programming Lesson 5: Problem Solving Problem Solving with Linear Programming Learning Outcome B-1 LP-L5 Objectives: To solve complex problems using Linear Programming techniques.

30S Applied Math Mr. Knight – Killarney School Slide 2 Unit: Linear Programming Lesson 5: Problem Solving The process of finding a feasible region and locating the points that give the minimum or maximum value to a specific expression is called linear programming. It is frequently used to determine maximum profits, minimum costs, minimum distances, and so on. Theory – Intro

30S Applied Math Mr. Knight – Killarney School Slide 3 Unit: Linear Programming Lesson 5: Problem Solving Graph the following system of inequalities and identify the corner points of the feasible region. Then find the values of x and y that maximize the expression M = x + 3y. Example - Maximize the Value of a Specific Expression x + y  6 x + 2y  8 x  2 y  1

30S Applied Math Mr. Knight – Killarney School Slide 4 Unit: Linear Programming Lesson 5: Problem Solving Graph the following system of inequalities and identify the corner points of the feasible region. Then find the values of x and y that maximize the expression M = x + 3y. Example - Maximize the Value of a Specific Expression x + y  6 x + 2y  8 x  2 y  1 Solution 1. Graph the system: The feasible region is the green shaded area shown 2. Find the vertices of the feasible region: The coordinates of the corner points are (2, 3), (2, 1), (5, 1), and (4, 2). 3. Substitute each vertice into the equation to find maximum: The value of M for each point is Point (2, 3): M = 2 + 3(3) = 11 Point (2, 1): M = 2 + 3(1) = 5 Point (5, 1): M = 5 + 3(1) = 8 Point (4, 2): M = 4 + 3(2) = 10 Therefore, the value of M is maximized at (2, 3).

30S Applied Math Mr. Knight – Killarney School Slide 5 Unit: Linear Programming Lesson 5: Problem Solving Graph the following system of inequalities and identify the corner points of the feasible region. Then find the values of x and y that maximize the expression M = 4x + y. Test Yourself - Maximize the Value of a Specific Expression x  0 y  0 3x + 2y  6 2x + 3y  6

30S Applied Math Mr. Knight – Killarney School Slide 6 Unit: Linear Programming Lesson 5: Problem Solving Graph the following system of inequalities and identify the corner points of the feasible region. Then find the values of x and y that maximize the expression M = 4x + y. Test Yourself - Maximize the Value of a Specific Expression x  0 y  0 3x + 2y  6 2x + 3y  6 Solution 1. Graph the system: The feasible region is the green shaded area shown 2. Find the vertices of the feasible region: The coordinates of the corner points are (0, 3), (0, 2), and (1.2, 1.2). 3. Substitute each vertice into the equation to find maximum: Using (0, 3), M = 4(0) + 3 = 3. Using (0, 2), M = 4(0) + 2 = 2. Using (1.2, 1.2), M = 4(1.2) = 6. The coordinates (1.2, 1.2) produce the maximum value of the expression 4x + y.

30S Applied Math Mr. Knight – Killarney School Slide 7 Unit: Linear Programming Lesson 5: Problem Solving Graph the following system of inequalities and identify the corner points of the feasible region. Then find the values of x and y that minimize the expression M = 3x + 2y. Test Yourself – Minimize the Value of a Specific Expression x + y  4 x + 5y  8 -x + 2y  6

30S Applied Math Mr. Knight – Killarney School Slide 8 Unit: Linear Programming Lesson 5: Problem Solving Graph the following system of inequalities and identify the corner points of the feasible region. Then find the values of x and y that minimize the expression M = 3x + 2y. Test Yourself – Minimize the Value of a Specific Expression x + y  4 x + 5y  8 -x + 2y  6 Solution 1. Graph the system: The feasible region is the green shaded area shown 2. Find the vertices of the feasible region: The coordinates of the corner points are (-2, 2), (3, 1), and (0.67, 3.33). 3. Substitute each vertice into the equation to find minimum: Using (-2, 2), M = 3(-2) + 2(2) = -2. Using (3, 1), M = 3(3) + 2(1) = 11. Using (0.67, 3.33), M = 3(0.67) + 2(3.33) = The coordinates (-2, 2) produce the minimum value of the expression 3x + 2y.

30S Applied Math Mr. Knight – Killarney School Slide 9 Unit: Linear Programming Lesson 5: Problem Solving The constraints for manufacturing two types of hockey skates are given by the following system of inequalities. Find the maximum value of Q over the feasible region if Q = 3x + 5y. Test Yourself – Maximize the Value of a Specific Expression y  -1x + 4 x + 4y  7 -x + 2y  5

30S Applied Math Mr. Knight – Killarney School Slide 10 Unit: Linear Programming Lesson 5: Problem Solving The constraints for manufacturing two types of hockey skates are given by the following system of inequalities. Find the maximum value of Q over the feasible region if Q = 3x + 5y. Test Yourself – Maximize the Value of a Specific Expression y  -1x + 4 x + 4y  7 -x + 2y  5 Solution 1. Graph the system: The feasible region is the green shaded area shown 2. Find the vertices of the feasible region: The coordinates of the corner points are (1, 3), (-1, 2), and (3, 1). 3. Substitute each vertice into the equation to find maximum: Using (1, 3), Q = 3(1) + 5(3) = 18. Using (-1, 2), Q = 3(-1) + 5(2) = 7. Using (3, 1), Q = 3(3) + 5(1) = 14. The coordinates (1, 3) produce a maximum value for Q over the feasible region where Q = 3x + 5y.

30S Applied Math Mr. Knight – Killarney School Slide 11 Unit: Linear Programming Lesson 5: Problem Solving Here is a plan of the steps used to solve word problems using linear programming: 1.After reading the question, make a chart to see the information more clearly. 2.Assign variables to the unknowns. 3.Form expressions to represent the restrictions. 4.Graph the inequalities. 5.Find the coordinates of the corner points of the feasible region. 6.Find the vertex point that maximizes or minimizes what we are looking for. 7.State the solution in a sentence. Theory – Solving Problems Using Linear Programming

30S Applied Math Mr. Knight – Killarney School Slide 12 Unit: Linear Programming Lesson 5: Problem Solving Example – Seven Steps

30S Applied Math Mr. Knight – Killarney School Slide 13 Unit: Linear Programming Lesson 5: Problem Solving Example – Seven Steps cont’d

30S Applied Math Mr. Knight – Killarney School Slide 14 Unit: Linear Programming Lesson 5: Problem Solving Example – Seven Steps cont’d

30S Applied Math Mr. Knight – Killarney School Slide 15 Unit: Linear Programming Lesson 5: Problem Solving Example 2 – Seven Steps

30S Applied Math Mr. Knight – Killarney School Slide 16 Unit: Linear Programming Lesson 5: Problem Solving Example 2 – Seven Steps cont’d

30S Applied Math Mr. Knight – Killarney School Slide 17 Unit: Linear Programming Lesson 5: Problem Solving Example 2 – Seven Steps cont’d