A coupled (hybrid) potential QM/MM/MD simulations in Amber Dr. Vladislav Vasilyev Supercomputer Facility The Australian National University.

Slides:



Advertisements
Similar presentations
Simulazione di Biomolecole: metodi e applicazioni giorgio colombo
Advertisements

Amber: How to Prepare Parameters for Non-standard Residues
Homework 2 (due We, Feb. 5): Reading: Van Holde, Chapter 1 Van Holde Chapter 3.1 to 3.3 Van Holde Chapter 2 (we’ll go through Chapters 1 and 3 first. 1.Van.
Survey of Molecular Dynamics Simulations By Will Welch For Jan Kubelka CHEM 4560/5560 Fall, 2014 University of Wyoming.
Puentes de Hidrógeno. Intermolecular Forces 11.2 Intermolecular forces are forces between molecules. Intramolecular forces hold atoms together in a molecule.
Solvation Models. Many reactions take place in solution Short-range effects Typically concentrated in the first solvation sphere Examples: H-bonds,
Force Field of Biological System 中国科学院理论物理研究所 张小虎 研究生院《分子建模与模拟导论》课堂 2009 年 10 月 21 日.
Molecular Modeling: Molecular Mechanics C372 Introduction to Cheminformatics II Kelsey Forsythe.
Molecular Mechanics Force Fields Basic Premise If we want to study a protein, piece of DNA, biological membranes, polysaccharide, crystal lattice, nanomaterials,
Chemistry 6440 / 7440 Semi-Empirical Molecular Orbital Methods.
Quantum Mechanics and Force Fields Hartree-Fock revisited Semi-Empirical Methods Basis sets Post Hartree-Fock Methods Atomic Charges and Multipoles QM.
Computational Chemistry
Ion Solvation Thermodynamics from Simulation with a Polarizable Force Field Gaurav Chopra 07 February 2005 CS 379 A Alan GrossfeildPengyu Ren Jay W. Ponder.
Catalytic Strategies. Basic Catalytic Principles What is meant by the binding energy as it relates to enzyme substrate interactions? –free energy released.
Chemistry 6440 / 7440 QM / MM Calculations. Resources Cramer, C. J.; Essentials of Computational Chemistry; Wiley: Chichester, 2002, Chapter 13. Froese,
Continuum Representations of the Solvent pp (Old Edition) Eva Zurek.
The Calculation of Enthalpy and Entropy Differences??? (Housekeeping Details for the Calculation of Free Energy Differences) first edition: p
Case Studies Class 5. Computational Chemistry Structure of molecules and their reactivities Two major areas –molecular mechanics –electronic structure.
Molecular Modeling of Crystal Structures molecules surfaces crystals.
Lecture 3 – 4. October 2010 Molecular force field 1.
Electron transfer through proteins Myeong Lee (02/20/2006)
Lectures Molecular Bonding Theories 1) Lewis structures and octet rule
Catalytic Mechanism of Chymotrypsin slide 1 Chymotrypsin –Protease: catalyze hydrolysis of proteins in small intestine –Specificity: Peptide bond on carboxyl.
Periodicity of Atomic Properties Elements in the same group have the same number of valence electrons and related electron configurations; hence have similar.
Design of a novel globular protein with atomic-level accuracy.
Computational Chemistry. Overview What is Computational Chemistry? How does it work? Why is it useful? What are its limits? Types of Computational Chemistry.
An Introduction to Molecular Orbital Theory. Levels of Calculation Classical (Molecular) Mechanics quick, simple; accuracy depends on parameterization;
Molecular Modeling Part I Molecular Mechanics and Conformational Analysis ORG I Lab William Kelly.
Computational Chemistry
Introduction. What is Computational Chemistry?  Use of computer to help solving chemical problems Chemical Problems Computer Programs Physical.
Molecular Modeling Fundamentals: Modus in Silico C372 Introduction to Cheminformatics II Kelsey Forsythe.
© AS Jul-12. Electronegativity = the power of an atom to attract the electrons in a covalent bond.
The Chemistry of Life. The Basics What are the properties of matter? –Mass and volume What are the phases of matter? –Solid, liquid, gas What is the smallest.
Electron Configuration and Periodicity
02/03/10 CSCE 769 Dihedral Angles Homayoun Valafar Department of Computer Science and Engineering, USC.
An Introduction to Computational Chemistry
CZ5225 Methods in Computational Biology Lecture 4-5: Protein Structure and Structural Modeling Prof. Chen Yu Zong Tel:
1.Solvation Models and 2. Combined QM / MM Methods See review article on Solvation by Cramer and Truhlar: Chem. Rev. 99, (1999)
Electrostatic Effects in Organic Chemistry A guest lecture given in CHM 425 by Jack B. Levy March, 2003 University of North Carolina at Wilmington (subsequently.
Computational Chemistry Molecular Mechanics/Dynamics F = Ma Quantum Chemistry Schr Ö dinger Equation H  = E 
Mechanism of lysozyme Lysozyme digests bacterial cell walls by breaking  (1- 4) glycosidic bonds between (N- acetylmuramic acid (NAM) and N-acetylglucosamine.
Binding and Catalysis of Metallo-  -Lactamases Studied using a SCC-DFTB/Charmm Approach D. Xu and H. Guo Department of Chemistry University of New Mexico.
Common Potential Energy Functions of Separation Distance The Potential Energy function describes the energy of a particular state. When given as a function.
Molecular simulation methods Ab-initio methods (Few approximations but slow) DFT CPMD Electron and nuclei treated explicitly. Classical atomistic methods.
Molecular Mechanics Studies involving covalent interactions (enzyme reaction): quantum mechanics; extremely slow Studies involving noncovalent interactions.
Covalent interactions non-covalent interactions + = structural stability of (bio)polymers in the operative molecular environment 1 Energy, entropy and.
Atoms.
MODELING MATTER AT NANOSCALES 3. Empirical classical PES and typical procedures of optimization Classical potentials.
ELECTRONIC STRUCTURE OF MATERIALS From reality to simulation and back A roundtrip ticket.
1. 2 Molecular Geometry and Polarity Part A: Chemical Bonding Review Dr. Chin Chu River Dell Regional High School.
Chapter2. Some Thermodynamics Aspects of Intermolecular Forces Chapter2. Some Thermodynamics Aspects of Intermolecular Forces 한국과학기술원 화학과 계면화학 제 1 조 김동진.
TURBOMOLE Lee woong jae.
Quantum Mechanics/ Molecular Mechanics (QM/MM) Todd J. Martinez.
QM/MM Theory and Practice By Adrian Roitberg / Ross Walker.
PPT - Forming Ionic Compounds
Role of Theory Model and understand catalytic processes at the electronic/atomistic level. This involves proposing atomic structures, suggesting reaction.
1 MODELING MATTER AT NANOSCALES 2. Energy of intermolecular processes.
Molecular Mechanics (Molecular Force Fields). Each atom moves by Newton’s 2 nd Law: F = ma E = … x Y Principles of M olecular Dynamics (MD): F =
Advanced methods of molecular dynamics 1.Monte Carlo methods 2.Free energy calculations 3.Ab initio molecular dynamics 4.Quantum molecular dynamics 5.Trajectory.
1 SURVEY OF BIOCHEMISTRY Enzyme Catalysis. 2 Enzymatic Catalysis: Recap General Properties of Enzymes –6 Enzyme Classes –Substrate Specificity –Types.
Ch. 8 Covalent Bonding Pre AP Chemistry. I. Molecular Compounds  A. Molecules & Molecular Formulas  1. Another way that atoms can combine is by sharing.
Basic Chemistry Interactions between atoms—chemical bonds –Chemical reaction Interaction between two or more atoms that occurs as a result of activity.
Van der Waals dispersion in density functional theory
Unit 3.3: Covalent Bonds and Intermolecular Forces
1.7 Trends in the Periodic Table
Chemsheets AS006 (Electron arrangement)
“Building up” the atoms in the periodic table
Molecular Geometry and Polarity Part A: Chemical Bonding Review
Chapter 8 Covalent Bonding 8.4 Polar Bonds and Molecules
Chapter 8 Covalent Bonding 8.4 Polar Bonds and Molecules
Presentation transcript:

A coupled (hybrid) potential QM/MM/MD simulations in Amber Dr. Vladislav Vasilyev Supercomputer Facility The Australian National University

Hybrids are popular from the ancient time

Why Do We Need a Hybrid QM/MM Approach? Quantum chemical methods are generally applicable and allow the calculation of ground and excited state properties (molecular energies and structures, energies and structures of transition states, atomic charges, reaction pathways etc.) Molecular Mechanical methods are restricted to the classes of molecule it have been designed for and their success strongly depends on the careful calibration of a large number of parameters.

Why Do We Need a Hybrid QM/MM Approach? CPU TimeMemory MethodSecondsTime unitsKBMemory units Quantum chemical * Molecular Mechanical The main bottleneck of quantum chemical methods is that they are CPU and memory hungry. For example, for small peptide of 126 atoms one energy evaluation requires: *Semi-empirical PM3 method In general, CPU and memory requirements: Molecular Mechanical methods ~ N 2 Semiempirical Quantum Chemical methods ~ N 2 Ab initio Quantum Chemical methods ~ N 4

A Hybrid QM/MM Approach The development of hybrid QM/MM approaches is guided by the general idea that large chemical systems may be partitioned into an electronically important region which requires a quantum chemical treatment and a remainder which only acts in a perturbative fashion and thus admits a classical description.

The Simplest Hybrid QM/MM Model Hamiltonian for the molecular system in the Born-Oppenheimer approximation: The main drawbacks of this simple QM/MM model are:  it is impossible to optimize the position of the QM part relative to the external charges because QM nuclei will collapse on the negatively charged external charges.  some MM atoms possess no charge and so would be invisible to the QM atoms  the van der Waals terms on the MM atoms often provide the only difference in the interactions of one atom type versus another, i.e. chloride and bromide ions both have unit negative charge and only differ in their van der Waals terms.  “Standard” QM hamiltonian

A Hybrid QM/MM Model So, it is quite reasonable to attribute the van der Waals parameters (as it is in the MM method) to every QM atom and the Hamiltonian describing the interaction between the QM and MM atoms can have a form: The van der Waals term models also electronic repulsion and dispersion interactions, which do not exist between QM and MM atoms because MM atoms possess no explicit electrons. A. Warshel, M. Levitt // Theoretical Studies of Enzymic Reactions: Dielectric, Electrostatic and steric stabilization of the carbonium ion in the reaction of lysozyme. // J.Mol.Biol. 103(1976),

The Hybrid QM/MM Model Now we can construct a “real” hybrid QM/MM Hamiltonian: A “standard” MM force field can be used to determine the MM energy. For example, AMBER-like force field has a form:

Choice of QM method... is a compromise between computational efficiency and practicality and the desired chemical accuracy. The main advantage of semi-empirical QM methods is that their computational efficiency is orders of magnitude greater than either the density functional or ab initio methods

QM Methods in Amber 9 Available semi- empirical Hamiltonians are PM3, AM1, MNDO, PDDG/PM3, PDDG/MNDO. They can be used for gas phase, generalized Born and PME periodic simulations.

QM Methods in Amber 9 Support is also available, on a functionally limited basis: 1.The Density Functional Theory-based-tight- binding (DFTB) Hamiltonian 2.The Self-Consistent-Charge version, SCC- DFTB The DFTB/SCC-DFTB implementation does not currently support generalized Born, PME or Ewald calculations,

The elements supported by QM methods in Amber 9 MNDO: H, Li, Be, B, C, N, O, F, Al, Si, P, S, Cl, Zn, Ge, Br, Sn, I, Hg, Pb AM1: H, C, N, O, F, Al, Si, P, S, Cl, Zn, Ge, Br, I, Hg PM3: H, Be, C, N, O, F, Mg, Al, Si, P, S, Cl, Zn, Ga, Ge, As, Se, Br, Cd, In, Sn, Sb, Te, I, Hg, Tl, Pb, Bi PDDG/PM3: H, C, N, O, F, Si, P, S, Cl, Br, I PDDG/MNDO: H, C, N, O, F, Cl, Br, I PM3CARB1: H, C, O DFTB/SCC-DFTB: H, C, N, O, S, Zn

Calibration of the QM/MM potential Crucial aspect is how the interaction between QM and MM parts is determined. In choosing the appropriate form, it is required that the balance between attractive and repulsive forces must be preserved and the QM/MM interactions must be of the correct magnitude with respect to the separate QM and MM contributions

Calibration of the QM/MM potential: Parameterizations 1) Modification of the one-electron terms arising from interaction of the electron cloud of the QM fragment with the point charge of an MM atom. 2) By varying the radii in the van der Waals terms. 3) By varying 1)+2) (1)(2)

Calibration of the QM/MM potential 1) By hand, to find the optimum values of the parameters by calculating interaction curves for charge/ion systems and comparing them with the MP2/ G** ab initio results. M.J. Field, P.A. Bash, M. Karplus, J.Comp.Chem., 11(1990), ) Fitting calculated H-bond energies to experimental data on ion-molecular complexes in the gas phase. V.V. Vasilyev, A.A. Bliznyuk, A.A. Voityuk, Int.J.Quant.Chem. 44(1992),

Calibration of the QM/MM potential: 3) Optimizing van der Waals parameters on QM atoms to reproduce the 6-31G(d) interaction energies for H-bonded complexes in the gas phase. P.A. Bash, L. Lawrence, A.D. MacKerell, Jr., D. Levine, P. Hallstrom, PNAS USA, 93(1996), ) Optimizing van der Waals parameters on QM atoms to reproduce the MP2/6-31G(dp) interaction energies for H-bonded complexes in the gas phase. J. Gao // Toward a molecular Orbital Derived Empirical Potential for Liquid Simulations // J.Phys.Chem. B 101(1997), ) By varying the radii in the van der Waals terms to reproduce experimental free energies of solvation using MD simulations. P.L. Cummins, J.E. Gready, J.Comp.Chem., 18(1997),

Dividing Covalent Bonds across the QM and MM Regions In many simulations it is necessary to have the QM/MM boundary cut covalent bonds, and a number of additional approximations have to be made.

Dividing Covalent Bonds across the QM and MM Regions A. Warshel, M. Levitt // Theoretical Studies of Enzymic Reactions: Dielectric, Electrostatic and steric stabilization of the carbonium ion in the reaction of lysozyme. // J.Mol.Biol. 103 (1976), V. Thery, D. Rinaldi, J.-L. Rivail, B. Maigret, G.G. Ferenczy, J.Comp.Chem. 15 (1995), 269 Using a hybrid orbital on the frontier MM atom

Dividing Covalent Bonds across the QM and MM Regions “Link” atoms are used to gracefully cap the electron density. This approach is used in Amber Using “link” atoms

Implementation of “link” atom Approach in Amber 9 The link atom is placed along the bond vector joining the QM and MM atom The default link atom type is hydrogen It interacts with MM region only electrostatically (no VDW term). WdV interaction between QM and MM atoms which form 1-2 and 1-3 “bonded” pairs is not calculated. Bond stretching, angle bending, and torsion interactions between QM and MM regions are calculated as those in MM if 1-2, 1-2-3, or terms contain at least one MM atom

Example of Application of the QM/MM Method to the Enzyme Catalysis

Tetrahedral Intermediate Formation in the Acylation Step of Acetylcholinesterases Acetylcholinesterases (AChE) are the serine protease enzymes which hydrolyze the neurotransmitter acetylcholine (Ach) CH3COOCH2CH2N+(CH3)3 + AchE  CH3CO-AchE + HOCH2CH2N+(CH3)3  CH3COO- + H+ + AChE and which function at a rate approaching that of a diffusion- controlled reaction. Remark: Human Cathepsin G is also a serine protease enzyme V.V. Vasilyev, J.Mol.Struct. (Theochem), 304(1994), 129.

Steps along the reaction pathway of serine protease catalyzed bond cleavage  Rate limiting step of the reaction  “Catalytic triad”

Partition into the QM and MM Parts  QM Region (PM3) – CH3OH (as Ser-200), methylimidazole (as His-440), CH3CH2COOH (as Glu-327), and CH3COOCH3 (as a substrate)  MM Region – 5161 enzyme atoms

Activation of the Serine Residue Critical Step of the Reaction is activation of the Serine residue In Gas Phase:PA(CH3O-) = ~ -350 kcal/mole PA(Imidazole) = ~ -220 kcal/mole where PA is a Proton Affinity

Activation of the Serine Residue A proton transfer from the Serine to Histidine residue is very unfavorable in the gas phase (~34.6 kcal/mol). A proton transfer is less unfavorable in the enzyme (energy barrier is about 21.5 kcal/mol).

Activation of the Serine Residue Enzyme environment creates electrostatic potential which favours the proton transfer from the Serine to Histidine residue.

Tetrahedral Intermediate Formation in the Acylation Step of Acetylcholinesterases  Incorporation of enzyme environment in simulation changes drastically the flow of the reaction  A decrease in the activation energy of TI formation in the enzyme environments versus the uncatalysed gas-phase reaction is about 27 kcal/mol (experimental estimation of the reduction in activation energy for the whole enzyme reaction versus uncatalysed neutral, basic, and acidic hydrolysis of AchE is 14, 11, and 18 kcal/mol, respectively.)

Hints for running QM/MM calculations Choosing the QM region One might want to have as large a QM region as possible There are no good universal rules here However, having more than atoms in the QM region will lead to simulations that are very expensive.

Hints for running QM/MM calculations Choosing the QM region for many features of conformational analysis, a good MM force field may be better than a semi-empirical or DFTB quantum description.

Hints for running QM/MM calculations Choosing the QM region

Hints for running QM/MM calculations Parallel Simulations At present all parts of the QM simulation are parallel except the density matrix build and the matrix diagonalisation. For small QM systems these two operations do not take a large percentage of time and so acceptable scaling can be seen to around 8 cpus. However, for large QM systems the matrix diagonalization time will dominate and so the scaling will not be as good.

Amber 9 QM/MM Example

Resume Amber 9 features new and significantly improved QM/MM support The QM/MM facility supports gas phase, implicit solvent (GB) and periodic boundary (PME) simulations Compared to earlier versions, the QM/MM implementation offers improved accuracy, energy conservation, and performance.