Principles of Reactivity: Electron Transfer Reactions

Slides:



Advertisements
Similar presentations
Electrochemistry Applications of Redox.
Advertisements

Basic Concepts of Electrochemical Cells
ELECTROCHEMISTRY Chapter 20
Electrochemistry Generating Voltage (Potential)
1 © 2006 Brooks/Cole - Thomson Balancing Equations for Redox Reactions Some redox reactions have equations that must be balanced by special techniques.
Electrochemistry Chapter 19
Chapter 20: Electrochemistry
1 Electrochemistry Chapter 18, Electrochemical processes are oxidation-reduction reactions in which: the energy released by a spontaneous reaction.
Chapter 20: Electrochemsitry A.P. Chemsitry Oxidation-Reduction Reactions Oxidation-reduction reactions (or redox reactions) involve the transfer.
Chapter 20 Electrochemistry.
Oxidation-Reduction (Redox) Reactions
ELECTROCHEMISTRY Chapter 21 Electric automobile Copyright © 1999 by Harcourt Brace & Company All rights reserved. Requests for permission to make copies.
Prentice Hall © 2003Chapter 20 Zn added to HCl yields the spontaneous reaction Zn(s) + 2H + (aq)  Zn 2+ (aq) + H 2 (g). The oxidation number of Zn has.
Copyright©2000 by Houghton Mifflin Company. All rights reserved. 1 Electrochemistry The study of the interchange of chemical and electrical energy.
Chapter 20 Electrochemistry
1 ELECTROCHEMICAL CELLS Chapter 20 : D8 C Half-Cells and Cell Potentials > 2 Copyright © Pearson Education, Inc., or its affiliates. All Rights.
1 ELECTROCHEMISTRY Chapter 18 SAVE PAPER AND INK!!! When you print out the notes on PowerPoint, print "Handouts" instead of "Slides" in the print setup.
Chapter 18 Electrochemistry
Electrochemistry Chapter 4.4 and Chapter 20. Electrochemical Reactions In electrochemical reactions, electrons are transferred from one species to another.
Predicting Spontaneous Reactions
ELECTROCHEMISTRY REDOX REVISITED! 24-Nov-97Electrochemistry (Ch. 21) & Phosphorus and Sulfur (ch 22)1.
Electrochemistry AP Chapter 20. Electrochemistry Electrochemistry relates electricity and chemical reactions. It involves oxidation-reduction reactions.
Chapter 20 - Electron Transfer Reactions Objectives: 1. Carry out balancing of redox reactions in acidic or basic solutions; 2. Recall the parts of a basic.
ELECTROCHEMISTRY To play the movies and simulations included, view the presentation in Slide Show Mode.
ELECTROCHEMISTRY To play the movies and simulations included, view the presentation in Slide Show Mode.
1 © 2006 Brooks/Cole - Thomson OXIDATION-REDUCTION REACTIONS Indirect Redox Reaction A battery functions by transferring electrons through an external.
Electrochemistry Chapter 19.
1 © 2006 Brooks/Cole - Thomson Chemistry and Chemical Reactivity 6th Edition John C. Kotz Paul M. Treichel Gabriela C. Weaver CHAPTER 20 Principles of.
Electrochemistry Chapter 19 Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display.
Redox Reactions and Electrochemistry
Electrochemistry Chapter 19 Electron Transfer Reactions Electron transfer reactions are oxidation- reduction or redox reactions. Results in the generation.
Redox Reactions and Electrochemistry
Electrochemistry Chapter 17.
Chapter 20 – Redox Reactions One of the earliest recognized chemical reactions were with oxygen. Some substances would combine with oxygen, and some would.
Electrochemistry Terminology  Oxidation  Oxidation – A process in which an element attains a more positive oxidation state Na(s)  Na + + e -  Reduction.
Chapter 20 Electrochemistry
Chapter 20 Electrochemistry.
Electrochemistry Experiment 12. Oxidation – Reduction Reactions Consider the reaction of Copper wire and AgNO 3 (aq) AgNO 3 (aq) Ag(s) Cu(s)
Electrochemistry Chapter 19. 2Mg (s) + O 2 (g) 2MgO (s) 2Mg 2Mg e - O 2 + 4e - 2O 2- Oxidation half-reaction (lose e - ) Reduction half-reaction.
8–1 Ibrahim BarryChapter 20-1 Chapter 20 Electrochemistry.
1 Electron Transfer Reactions: CH 19: Oxidation-reduction or redox reactions. Results in generation of an electric current (electricity) or caused by.
Principles of Reactivity: Electron Transfer Reactions
Chapter 20 Electrochemistry and Oxidation-Reduction.
Oxidation-Reduction Reactions Chapter 4 and 18. 2Mg (s) + O 2 (g) 2MgO (s) 2Mg 2Mg e - O 2 + 4e - 2O 2- _______ half-reaction (____ e - ) ______________________.
Electrochemistry Chapter 3. 2Mg (s) + O 2 (g) 2MgO (s) 2Mg 2Mg e - O 2 + 4e - 2O 2- Oxidation half-reaction (lose e - ) Reduction half-reaction.
1 Focus 4: Oxidation-reduction reactions as source of energy SAVE PAPER AND INK!!! When you print out the notes on PowerPoint, print "Handouts" instead.
Electrochemistry Chapter 20 Brown-LeMay. Review of Redox Reactions Oxidation - refers to the loss of electrons by a molecule, atom or ion - LEO goes Reduction.
17-Nov-97Electrochemistry (Ch. 21)1 ELECTROCHEMISTRY Chapter 21 Electric automobile redox reactions electrochemical cells electrode processes construction.
Redox Reactions & Electrochemistry Chapter 19 Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display.
Electrochemistry. Electron Transfer Reactions Electron transfer reactions are oxidation- reduction or redox reactions. Electron transfer reactions are.
Redox Reactions and Electrochemistry Chapter 19. Voltaic Cells In spontaneous oxidation-reduction (redox) reactions, electrons are transferred and energy.
1 CELL POTENTIAL, E Electrons are “driven” from anode to cathode by an electromotive force or emf.Electrons are “driven” from anode to cathode by an electromotive.
Electrochemistry Chapter 18 Electrochemistry. Electrochemistry Electrochemical Reactions In electrochemical reactions, electrons are transferred from.
Chemical Reactions Unit Learning Goal 4: Examine the Law of Conservation of Energy Learning Goal 5: Describe how electrochemical energy can be produced.
Electrochemistry Chapter 19 Electron Transfer Reactions Electron transfer reactions are oxidation- reduction or redox reactions. Results in the generation.
Commercial Voltaic Cells. 3.7…or Applications of Voltaic Cells…
1 © 2006 Brooks/Cole - Thomson OXIDATION-REDUCTION REACTIONS Indirect Redox Reaction A battery functions by transferring electrons through an external.
Electrochemistry Part Four. CHEMICAL CHANGE  ELECTRIC CURRENT To obtain a useful current, we separate the oxidizing and reducing agents so that electron.
1 Electrochemistry Chapter 18 Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display.
Electrochemistry Terminology  Oxidation  Oxidation – A process in which an element attains a more positive oxidation state Na(s)  Na + + e -  Reduction.
Chapter 20: Electrochemistry. © 2009, Prentice-Hall, Inc. Electrochemical Reactions In electrochemical reactions, electrons are transferred from one species.
Electrochemistry Terminology  Oxidation  Oxidation – A process in which an element attains a more positive oxidation state Na(s)  Na + + e -  Reduction.
ELECTROCHEMISTRY Chapter 9
Chapter 20 - Electrochemistry
Batteries and Galvanic Cells
Batteries and Galvanic Cells
ELECTROCHEMISTRY Chapter 18
Presentation transcript:

Principles of Reactivity: Electron Transfer Reactions Chemistry and Chemical Reactivity 6th Edition John C. Kotz Paul M. Treichel Gabriela C. Weaver Principles of Reactivity: Electron Transfer Reactions Lectures written by John Kotz © 2006 Brooks/Cole Thomson

ELECTROCHEMISTRY Chapter 19

TRANSFER REACTIONS Atom/Group transfer Electron transfer HCl + H2O ---> Cl- + H3O+ Electron transfer Cu(s) + 2 Ag+(aq) ---> Cu2+(aq) + 2 Ag(s)

Electron Transfer Reactions Electron transfer reactions are oxidation-reduction or redox reactions. Redox reactions can result in the generation of an electric current or be caused by imposing an electric current. Therefore, this field of chemistry is often called ELECTROCHEMISTRY.

Review of Terminology for Redox Reactions OXIDATION—loss of electron(s) by a species; increase in oxidation number. REDUCTION—gain of electron(s); decrease in oxidation number. OXIDIZING AGENT—electron acceptor; species is reduced. REDUCING AGENT—electron donor; species is oxidized.

OXIDATION-REDUCTION REACTIONS Direct Redox Reaction Oxidizing and reducing agents in direct contact. Cu(s) + 2 Ag+(aq) ---> Cu2+(aq) + 2 Ag(s)

Cu + Ag+ --give--> Cu2+ + Ag Balancing Equations Cu + Ag+ --give--> Cu2+ + Ag

Balancing Equations Step 1: Divide the reaction into half-reactions, one for oxidation and the other for reduction. Ox Cu ---> Cu2+ Red Ag+ ---> Ag Step 2: Balance each for mass. Already done in this case. Step 3: Balance each half-reaction for charge by adding electrons. Ox Cu ---> Cu2+ + 2e- Red Ag+ + e- ---> Ag

Balancing Equations Step 4: Multiply each half-reaction by a factor so that the reducing agent supplies as many electrons as the oxidizing agent requires. Reducing agent Cu ---> Cu2+ + 2e- Oxidizing agent 2 Ag+ + 2 e- ---> 2 Ag Step 5: Add half-reactions to give the overall equation. Cu + 2 Ag+ ---> Cu2+ + 2Ag The equation is now balanced for both charge and mass.

OXIDATION-REDUCTION REACTIONS Indirect Redox Reaction A battery functions by transferring electrons through an external wire from the reducing agent to the oxidizing agent.

Electrochemistry Alessandro Volta, 1745-1827, Italian scientist and inventor. Luigi Galvani, 1737-1798, Italian scientist and inventor.

CHEMICAL CHANGE ---> ELECTRIC CURRENT With time, Cu plates out onto Zn metal strip, and Zn strip “disappears.” Electrons are transferred from Zn to Cu2+, but there is no useful electric current. Oxidation: Zn(s) ---> Zn2+(aq) + 2e- Reduction: Cu2+(aq) + 2e- ---> Cu(s) -------------------------------------------------------- Cu2+(aq) + Zn(s) ---> Zn2+(aq) + Cu(s)

CHEMICAL CHANGE ---> ELECTRIC CURRENT To obtain a useful current, we separate the oxidizing and reducing agents so that electron transfer occurs through an external wire. This is accomplished in a GALVANIC or VOLTAIC cell. A group of such cells is called a battery.

Fe --> Fe2+ + 2e- Cu2+ + 2e- --> Cu Oxidation Anode Negative Reduction Cathode Positive Fe <--Anions Cations--> Fe •Electrons travel through external wire. Salt bridge allows anions and cations to move between electrode compartments.

The Cu|Cu2+ and Ag|Ag+ Cell

Electrochemical Cell Electrons move from anode to cathode in the wire. Anions & cations move thru the salt bridge. Electrochemical Cell

Terms Used for Voltaic Cells Figure 20.6

CELL POTENTIAL, E 1.10 V Cu and Cu2+, Zn and Zn2+, cathode anode 1.0 M Cu and Cu2+, cathode Zn and Zn2+, anode Electrons are “driven” from anode to cathode by an electromotive force or emf. For Zn/Cu cell, this is indicated by a voltage of 1.10 V at 25 ˚C and when [Zn2+] and [Cu2+] = 1.0 M. Standard reduction potentials are measured at standard conditions (1 M, 25oC)

CELL POTENTIAL, E For Zn/Cu cell, potential is +1.10 V at 25 ˚C and when [Zn2+] and [Cu2+] = 1.0 M. This is the STANDARD CELL POTENTIAL, Eo —a quantitative measure of the tendency of reactants to proceed to products when all are in their standard states at 25 ˚C.

Calculating Cell Voltage Balanced half-reactions can be added together to get overall, balanced equation. Zn(s) ---> Zn2+(aq) + 2e- Cu2+(aq) + 2e- ---> Cu(s) -------------------------------------------- Cu2+(aq) + Zn(s) ---> Zn2+(aq) + Cu(s) If we know Eo for each half-reaction, we could get Eo for net reaction.

2 H+(aq, 1 M) + 2e- <----> H2(g, 1 atm) CELL POTENTIALS, Eo Can’t measure 1/2 reaction Eo directly. Therefore, measure it relative to a STANDARD HYDROGEN CELL 2 H+(aq, 1 M) + 2e- <----> H2(g, 1 atm) Eo = 0.0 V

Supplier of electrons Acceptor of electrons Zn/Zn2+ half-cell hooked to a SHE. Eo for the cell = +0.76 V Negative electrode Positive electrode Supplier of electrons Acceptor of electrons Zn --> Zn2+ + 2e- Oxidation Anode 2 H+ + 2e- --> H2 Reduction Cathode

Reduction of H+ by Zn Active Figure 20.13

Overall reaction is reduction of H+ by Zn metal. Zn(s) + 2 H+ (aq) --> Zn2+ + H2(g) Eo = +0.76 V Therefore, Eo for Zn ---> Zn2+ (aq) + 2e- is +0.76 V Zn is a better reducing agent than H2.

Zn/Cu Electrochemical Cell + Anode, negative, source of electrons Cathode, positive, sink for electrons Zn(s) ---> Zn2+(aq) + 2e- Eo = +0.76 V Cu2+(aq) + 2e- ---> Cu(s) Eo = +0.34 V --------------------------------------------------------------- Cu2+(aq) + Zn(s) ---> Zn2+(aq) + Cu(s) Eo (calc’d) = +1.10 V

Uses of Eo Values Organize half-reactions by relative ability to act as oxidizing agents Use this to predict direction of redox reactions and cell potentials. Cu2+(aq) + 2e- ---> Cu(s) Eo = +0.34 V Zn2+(aq) + 2e- ---> Zn(s) Eo = –0.76 V Note that when a reaction is reversed the sign of E˚ is reversed!

Potential Ladder for Reduction Half-Reactions Figure 20.14 Best oxidizing agents Best reducing agents Potential Ladder for Reduction Half-Reactions

TABLE OF STANDARD REDUCTION POTENTIALS oxidizing ability of ion E o (V) Cu 2+ + 2e- Cu +0.34 2 H + + 2e- H 0.00 Zn + 2e- Zn -0.76 reducing ability of element 2

Using Standard Potentials, Eo Table 20.1 Which is the best oxidizing agent: O2, H2O2, or Cl2? _________________ Which is the best reducing agent: Hg, Al, or Sn? ____________________

Standard Redox Potentials, Eo Any substance on the right will reduce any substance higher than it on the left. Zn can reduce H+ and Cu2+. H2 can reduce Cu2+ but not Zn2+ Cu cannot reduce H+ or Zn2+.

Standard Redox Potentials, Eo Ox. agent Cu 2+ + 2e- --> Cu +0.34 + 2 H + 2e- --> H2 0.00 Zn + 2e- --> Zn -0.76 Red. agent Any substance on the right will reduce any substance higher than it on the left. Northwest-southeast rule: product-favored reactions occur between reducing agent at southeast corner oxidizing agent at northwest corner

Cu(s) | Cu2+(aq) || H+(aq) | H2(g) Cathode Positive Anode Negative Electrons <---------- Cu2+ + 2e- --> Cu Or Cu --> Cu2+ + 2 e- H2 --> 2 H+ + 2 e- or 2 H+ + 2e- --> H2

Cu(s) | Cu2+(aq) || H+(aq) | H2(g) Cathode Positive Anode Negative Electrons <---------- Cu2+ + 2e- --> Cu H2 --> 2 H+ + 2 e- The sign of the electrode in Table 20.1 is the polarity when hooked to the H+/H2 half-cell.

Using Standard Potentials, Eo In which direction do the following reactions go? Cu(s) + 2 Ag+(aq) ---> Cu2+(aq) + 2 Ag(s) Goes right as written 2 Fe2+(aq) + Sn2+(aq) ---> 2 Fe3+(aq) + Sn(s) Goes LEFT opposite to direction written What is Eonet for the overall reaction?

Eo for a Voltaic Cell Cd --> Cd2+ + 2e- or Cd2+ + 2e- --> Cd Fe --> Fe2+ + 2e- or Fe2+ + 2e- --> Fe All ingredients are present. Which way does reaction proceed? Calculate Eo for this cell.

E at Nonstandard Conditions The NERNST EQUATION E = potential under nonstandard conditions n = no. of electrons exchanged F = Faraday’s constant R = gas constant T = temp in Kelvins ln = “natural log” Q = reaction quotient

Eo and Thermodynamics ∆Go = -nFEo Eo is related to ∆Go, the free energy change for the reaction. ∆G˚ is proportional to –nE˚ ∆Go = -nFEo where F = Faraday constant = 9.6485 x 104 J/V•mol of e- (or 9.6485 x 104 coulombs/mol) and n is the number of moles of electrons transferred

Eo and ∆Go ∆Go = - n F Eo For a product-favored reaction Reactants ----> Products ∆Go < 0 and so Eo > 0 Eo is positive For a reactant-favored reaction Reactants <---- Products ∆Go > 0 and so Eo < 0 Eo is negative

Eo and Equilibrium Constant DGo = -RT ln K DGo = -nFEo

Dry Cell Battery Anode (-) Zn ---> Zn2+ + 2e- Cathode (+) Primary battery — uses redox reactions that cannot be restored by recharge. Anode (-) Zn ---> Zn2+ + 2e- Cathode (+) 2 NH4+ + 2e- ---> 2 NH3 + H2

Alkaline Battery Nearly same reactions as in common dry cell, but under basic conditions. Anode (-): Zn + 2 OH- ---> ZnO + H2O + 2e- Cathode (+): 2 MnO2 + H2O + 2e- ---> Mn2O3 + 2 OH-

Lead Storage Battery Secondary battery Uses redox reactions that can be reversed. Can be restored by recharging

Ni-Cad Battery Anode (-) Cd + 2 OH- ---> Cd(OH)2 + 2e- Cathode (+) NiO(OH) + H2O + e- ---> Ni(OH)2 + OH-

Fuel Cells: H2 as a Fuel Fuel cell - reactants are supplied continuously from an external source. Cars can use electricity generated by H2/O2 fuel cells. H2 carried in tanks or generated from hydrocarbons.

Hydrogen—Air Fuel Cell Figure 20.12

H2 as a Fuel Comparison of the volumes of substances required to store 4 kg of hydrogen relative to car size. (Energy, p. 290)

Storing H2 as a Fuel One way to store H2 is to adsorb the gas onto a metal or metal alloy. (Energy, p. 290)