5.4 Functions and Their Inverses CC.9-12.F.BF.1c (+) Compose functions. CC.9-12.A.CED.2 Create equations in two or more variables to represent relationships.

Slides:



Advertisements
Similar presentations
Solve the system of inequalities by graphing. x ≤ – 2 y > 3
Advertisements

Inverse Relations Objectives: Students will be able to…
5.2 Piecewise Functions CC.9-12.A.CED.2 Create equations in two or more variables to represent relationships between quantities; graph equations on coordinate.
5.5 Transforming & Modeling Functions CC.9-12.F.BF.3 Identify the effect on the graph of replacing f(x) by f(x) + k, k f(x), f(kx), and f(x + k) for specific.
Copyright © Cengage Learning. All rights reserved.
Preview Warm Up California Standards Lesson Presentation.
Example 1A: Using the Horizontal-Line Test
Solving Radical Equations and Inequalities 5-8
Algebra 2 Unit 9: Functional Relationships
HAWKES LEARNING SYSTEMS math courseware specialists Copyright © 2011 Hawkes Learning Systems. All rights reserved. Hawkes Learning Systems: College Algebra.
Functions and Their Inverses
Logarithmic Functions  In this section, another type of function will be studied called the logarithmic function. There is a close connection between.
Functions. A function is a relation that has exactly one output for each input.
Unit 1 Equations, Inequalities, and Functions. Unit 1: Equations, Inequalities, and Functions Overview: In this unit you will model real-world solutions.
EXAMPLE 1 Find an inverse relation Find an equation for the inverse of the relation y = 3x – 5. Write original relation. y = 3x – 5 Switch x and y. x =
INVERSE FUNCTIONS.  Prove that and are inverses of each other  Complete warm up individually and then compare to a neighbor END IN MIND.
4.3 Logarithm Functions Recall: a ≠ 1 for the exponential function f(x) = a x, it is one-to-one with domain (-∞, ∞) and range (0, ∞). when a > 1, it is.
Objectives Determine whether the inverse of a function is a function.
Functions and Their Inverses
Copyright © 2009 Pearson Education, Inc. CHAPTER 5: Exponential and Logarithmic Functions 5.1 Inverse Functions 5.2 Exponential Functions and Graphs 5.3.
Rational Exponents and Radical Functions
Use mental math to evaluate.
CHAPTER 6 SECTION 6 : FUNCTIONS AND THEIR INVERSES.
Holt CA Course Functions Warm Up Warm Up California Standards California Standards Lesson Presentation Lesson PresentationPreview.
Warm Ups {(2,0) (-1,3) (2,4)} 1. Write as table 2. Write as graph 3. Write as map 4. State domain & range 5. State the inverse.
Solving Systems by Graphing
Functions and Their Inverses
Lesson 1.6 Inverse Functions. Inverse Function, f -1 (x): Domain consists of the range of the original function Range consists of the domain of the original.
Domain x Range y Domain x Range y Domain x Range y n n n1234n n n0123n n + 5 PW page 14 questions.
1.8 Inverse Functions, page 222
Inverse Functions.
7-2 Inverses of Relations and Functions Warm Up Lesson Presentation
Holt CA Course Functions Warm Up Warm Up California Standards California Standards Lesson Presentation Lesson PresentationPreview.
Section 2.6 Inverse Functions. Definition: Inverse The inverse of an invertible function f is the function f (read “f inverse”) where the ordered pairs.
Solving Inequalities Using Addition and Subtraction
Warm Up. Objective: To find the inverse of a function, if the inverse exists.
OBJECTIVES:  Find inverse functions and verify that two functions are inverse functions of each other.  Use graphs of functions to determine whether.
Ch 9 – Properties and Attributes of Functions 9.5 – Functions and their Inverses.
Holt CA Course Functions Preparation for AF3.3 Graph linear functions, noting that the vertical change (change in y-value) per unit of horizontal.
Warm Up Evaluate the following. 1. f(x) = 2 x when x = f(x) = log x when x = f(x) = 3.78 x when x = f(x) = ln x when x =
Splash Screen.
Splash Screen.
3.1 Graphing Systems of Equations
Warm Up Solve for x in terms of y
Five-Minute Check (over Lesson 1-5) Mathematical Practices Then/Now
3.1 Graphing Systems of Equations
Inverse Functions Algebra III, Sec. 1.9 Objective
Warm Up Solve for y. y = 1. x = 3y –7 2. x = y = 8x – 5 3. x = 4 – y
CHAPTER 5: Exponential and Logarithmic Functions
Lesson 1.6 Inverse Functions
Inverse Relations and Functions
Lesson 6.7 Graph Linear Inequalities in Two Variables
Use Inverse Functions Lesson 3.4
Basics of Functions and Their Graphs
Functions and Their Inverses
Functions and Their Inverses
Functions and Their Inverses
To find the inverse of a function
7-2 Inverses of Relations and Functions Warm Up Lesson Presentation
Example 1A: Solving Inequalities with Variables on Both Sides
Warm Up Problem of the Day Lesson Presentation Lesson Quizzes.
Objective Solve inequalities that contain variable terms on both sides.
Unit 1 Day 8 Inverse Functions
Section 5.1 Inverse Functions
To find the inverse of a function
Functions and Their Inverses
CHAPTER 5: Exponential and Logarithmic Functions
Functions and Their Inverses
4-2 Inverses of Relations and Functions Warm Up Lesson Presentation
Presentation transcript:

5.4 Functions and Their Inverses CC.9-12.F.BF.1c (+) Compose functions. CC.9-12.A.CED.2 Create equations in two or more variables to represent relationships between quantities; graph equations on coordinate axes with labels and scales. CC A.CED.3 Represent constraints by equations or inequalities, and by systems of equations and/or inequalities, and interpret solutions as viable or nonviable options in a modeling context. Warm Up Solve for x in terms of y y = 2ln x

5.4 Functions and Their Inverses CC.9-12.F.BF.1c (+) Compose functions. CC.9-12.A.CED.2 Create equations in two or more variables to represent relationships between quantities; graph equations on coordinate axes with labels and scales. CC A.CED.3 Represent constraints by equations or inequalities, and by systems of equations and/or inequalities, and interpret solutions as viable or nonviable options in a modeling context. Determine whether the inverse of a function is a function. Write rules for the inverses of functions. Objectives

5.4 Functions and Their Inverses CC.9-12.F.BF.1c (+) Compose functions. CC.9-12.A.CED.2 Create equations in two or more variables to represent relationships between quantities; graph equations on coordinate axes with labels and scales. CC A.CED.3 Represent constraints by equations or inequalities, and by systems of equations and/or inequalities, and interpret solutions as viable or nonviable options in a modeling context. one-to-one function Vocabulary

5.4 Functions and Their Inverses CC.9-12.F.BF.1c (+) Compose functions. CC.9-12.A.CED.2 Create equations in two or more variables to represent relationships between quantities; graph equations on coordinate axes with labels and scales. CC A.CED.3 Represent constraints by equations or inequalities, and by systems of equations and/or inequalities, and interpret solutions as viable or nonviable options in a modeling context. You learned that the inverse of a function f(x) “undoes” f(x). Its graph is a reflection across line y = x. The inverse may or not be a function. Recall that the vertical-line test can help you determine whether a relation is a function. Similarly, the horizontal-line test can help you determine whether the inverse of a function is a function.

5.4 Functions and Their Inverses CC.9-12.F.BF.1c (+) Compose functions. CC.9-12.A.CED.2 Create equations in two or more variables to represent relationships between quantities; graph equations on coordinate axes with labels and scales. CC A.CED.3 Represent constraints by equations or inequalities, and by systems of equations and/or inequalities, and interpret solutions as viable or nonviable options in a modeling context.

5.4 Functions and Their Inverses CC.9-12.F.BF.1c (+) Compose functions. CC.9-12.A.CED.2 Create equations in two or more variables to represent relationships between quantities; graph equations on coordinate axes with labels and scales. CC A.CED.3 Represent constraints by equations or inequalities, and by systems of equations and/or inequalities, and interpret solutions as viable or nonviable options in a modeling context. Use the horizontal-line test to determine whether the inverse of the blue relation is a function. Example 1 The inverse is a function because no horizontal line passes through two points on the graph.

5.4 Functions and Their Inverses CC.9-12.F.BF.1c (+) Compose functions. CC.9-12.A.CED.2 Create equations in two or more variables to represent relationships between quantities; graph equations on coordinate axes with labels and scales. CC A.CED.3 Represent constraints by equations or inequalities, and by systems of equations and/or inequalities, and interpret solutions as viable or nonviable options in a modeling context. Use the horizontal-line test to determine whether the inverse of the red relation is a function. Example 2 The inverse is a not a function because a horizontal line passes through more than one point on the graph.

5.4 Functions and Their Inverses CC.9-12.F.BF.1c (+) Compose functions. CC.9-12.A.CED.2 Create equations in two or more variables to represent relationships between quantities; graph equations on coordinate axes with labels and scales. CC A.CED.3 Represent constraints by equations or inequalities, and by systems of equations and/or inequalities, and interpret solutions as viable or nonviable options in a modeling context. Use the horizontal-line test to determine whether the inverse of each relation is a function. The inverse is a function because no horizontal line passes through two points on the graph. Example 3

5.4 Functions and Their Inverses CC.9-12.F.BF.1c (+) Compose functions. CC.9-12.A.CED.2 Create equations in two or more variables to represent relationships between quantities; graph equations on coordinate axes with labels and scales. CC A.CED.3 Represent constraints by equations or inequalities, and by systems of equations and/or inequalities, and interpret solutions as viable or nonviable options in a modeling context.  To write the rule for the inverse of a function, you can exchange x and y and solve the equation for y. Because the value of x and y are switched, the domain of the function will be the range of its inverse and vice versa.

5.4 Functions and Their Inverses CC.9-12.F.BF.1c (+) Compose functions. CC.9-12.A.CED.2 Create equations in two or more variables to represent relationships between quantities; graph equations on coordinate axes with labels and scales. CC A.CED.3 Represent constraints by equations or inequalities, and by systems of equations and/or inequalities, and interpret solutions as viable or nonviable options in a modeling context. Example 4 Find the inverse of. Determine whether it is a function, and state its domain and range. Rewrite the function using y instead of f(x). Step 1 Find the inverse. Simplify. Switch x and y in the equation. Cube both sides. Isolate y.

5.4 Functions and Their Inverses CC.9-12.F.BF.1c (+) Compose functions. CC.9-12.A.CED.2 Create equations in two or more variables to represent relationships between quantities; graph equations on coordinate axes with labels and scales. CC A.CED.3 Represent constraints by equations or inequalities, and by systems of equations and/or inequalities, and interpret solutions as viable or nonviable options in a modeling context. Example 4 Continued The inverse is a function,. B/c? The domain of the inverse is the range of f(x):{x|x R }. The range is the domain of f(x):{y|y R }. Check Graph both relations to see that they are symmetric about y = x.

5.4 Functions and Their Inverses CC.9-12.F.BF.1c (+) Compose functions. CC.9-12.A.CED.2 Create equations in two or more variables to represent relationships between quantities; graph equations on coordinate axes with labels and scales. CC A.CED.3 Represent constraints by equations or inequalities, and by systems of equations and/or inequalities, and interpret solutions as viable or nonviable options in a modeling context. Rewrite the function using y instead of f(x). Step 1 Find the inverse. Take the cube root of both sides. Switch x and y in the equation. Add 2 to both sides of the equation. Simplify. Example 5 y = x 3 – 2 x = y 3 – 2 x + 2 = y 3 3 x + 2 = y Find the inverse of f(x) = x 3 – 2. Determine whether it is a function, and state its domain and range.

5.4 Functions and Their Inverses CC.9-12.F.BF.1c (+) Compose functions. CC.9-12.A.CED.2 Create equations in two or more variables to represent relationships between quantities; graph equations on coordinate axes with labels and scales. CC A.CED.3 Represent constraints by equations or inequalities, and by systems of equations and/or inequalities, and interpret solutions as viable or nonviable options in a modeling context. The domain of the inverse is the range of f(x): R. The range is the domain of f(x): R. Check Graph both relations to see that they are symmetric about y = x. Example 5 Continued Because the inverse is a function,.

5.4 Functions and Their Inverses CC.9-12.F.BF.1c (+) Compose functions. CC.9-12.A.CED.2 Create equations in two or more variables to represent relationships between quantities; graph equations on coordinate axes with labels and scales. CC A.CED.3 Represent constraints by equations or inequalities, and by systems of equations and/or inequalities, and interpret solutions as viable or nonviable options in a modeling context. You have seen that the inverses of functions are not necessarily functions. When both a relation and its inverses are functions, the relation is called a one-to-one function. In a one-to-one function, each y-value is paired with exactly one x-value. You can use composition of functions to verify that two functions are inverses. Because inverse functions “undo” each other, when you compose two inverses the result is the input value x.

5.4 Functions and Their Inverses CC.9-12.F.BF.1c (+) Compose functions. CC.9-12.A.CED.2 Create equations in two or more variables to represent relationships between quantities; graph equations on coordinate axes with labels and scales. CC A.CED.3 Represent constraints by equations or inequalities, and by systems of equations and/or inequalities, and interpret solutions as viable or nonviable options in a modeling context.

5.4 Functions and Their Inverses CC.9-12.F.BF.1c (+) Compose functions. CC.9-12.A.CED.2 Create equations in two or more variables to represent relationships between quantities; graph equations on coordinate axes with labels and scales. CC A.CED.3 Represent constraints by equations or inequalities, and by systems of equations and/or inequalities, and interpret solutions as viable or nonviable options in a modeling context. Determine by composition whether each pair of functions are inverses. Example 6 Find the composition f(g(x)). f(g(x)) = 3( x + 1) – Use the Distributive Property. Simplify. f(x) = 3x – 1 and g(x) = x Substitute x + 1 for x in f. 1 3 = (x + 3) – 1 = x + 2

5.4 Functions and Their Inverses CC.9-12.F.BF.1c (+) Compose functions. CC.9-12.A.CED.2 Create equations in two or more variables to represent relationships between quantities; graph equations on coordinate axes with labels and scales. CC A.CED.3 Represent constraints by equations or inequalities, and by systems of equations and/or inequalities, and interpret solutions as viable or nonviable options in a modeling context. Because f(g(x)) ≠ x, f and g are not inverses. There is no need to check g(f(x)). Example 6 Continued Check The graphs are not symmetric about the line y = x.

5.4 Functions and Their Inverses CC.9-12.F.BF.1c (+) Compose functions. CC.9-12.A.CED.2 Create equations in two or more variables to represent relationships between quantities; graph equations on coordinate axes with labels and scales. CC A.CED.3 Represent constraints by equations or inequalities, and by systems of equations and/or inequalities, and interpret solutions as viable or nonviable options in a modeling context. Example 7 Find the compositions f(g(x)) and g(f (x)). For x ≠ 1 or 0, f(x) = and g(x) = x 1 x – 1 Because f(g(x)) = g(f (x)) = x for all x but 0 and 1, f and g are inverses. = x = (x – 1) + 1 = x

5.4 Functions and Their Inverses CC.9-12.F.BF.1c (+) Compose functions. CC.9-12.A.CED.2 Create equations in two or more variables to represent relationships between quantities; graph equations on coordinate axes with labels and scales. CC A.CED.3 Represent constraints by equations or inequalities, and by systems of equations and/or inequalities, and interpret solutions as viable or nonviable options in a modeling context. Example 7 Continued Check The graphs are symmetric about the line y = x for all x but 0 and 1.

5.4 Functions and Their Inverses CC.9-12.F.BF.1c (+) Compose functions. CC.9-12.A.CED.2 Create equations in two or more variables to represent relationships between quantities; graph equations on coordinate axes with labels and scales. CC A.CED.3 Represent constraints by equations or inequalities, and by systems of equations and/or inequalities, and interpret solutions as viable or nonviable options in a modeling context. Independent Practice Due Tomorrow at Beginning of Class p # 9-21, odd

5.4 Functions and Their Inverses CC.9-12.F.BF.1c (+) Compose functions. CC.9-12.A.CED.2 Create equations in two or more variables to represent relationships between quantities; graph equations on coordinate axes with labels and scales. CC A.CED.3 Represent constraints by equations or inequalities, and by systems of equations and/or inequalities, and interpret solutions as viable or nonviable options in a modeling context. Lesson Quiz: Part I A: yes; B: no 1. Use the horizontal-line test to determine whether the inverse of each relation is a function.

5.4 Functions and Their Inverses CC.9-12.F.BF.1c (+) Compose functions. CC.9-12.A.CED.2 Create equations in two or more variables to represent relationships between quantities; graph equations on coordinate axes with labels and scales. CC A.CED.3 Represent constraints by equations or inequalities, and by systems of equations and/or inequalities, and interpret solutions as viable or nonviable options in a modeling context. Lesson Quiz: Part II D: {x|x ≥ 4}; R: {all Real Numbers} 2. Find the inverse f(x) = x 2 – 4. Determine whether it is a function, and state its domain and range. not a function

5.4 Functions and Their Inverses CC.9-12.F.BF.1c (+) Compose functions. CC.9-12.A.CED.2 Create equations in two or more variables to represent relationships between quantities; graph equations on coordinate axes with labels and scales. CC A.CED.3 Represent constraints by equations or inequalities, and by systems of equations and/or inequalities, and interpret solutions as viable or nonviable options in a modeling context. 3. Determine by composition whether f(x) = 3(x – 1) 2 and g(x) = +1 are inverses for x ≥ 0. Lesson Quiz: Part III yes