“Teach A Level Maths” Vol. 2: A2 Core Modules

Slides:



Advertisements
Similar presentations
“Teach A Level Maths” Vol. 2: A2 Core Modules
Advertisements

“Teach A Level Maths” Vol. 2: A2 Core Modules
“Teach A Level Maths” Vol. 2: A2 Core Modules
“Teach A Level Maths” Vol. 2: A2 Core Modules
“Teach A Level Maths” Vol. 2: A2 Core Modules
“Teach A Level Maths” Vol. 2: A2 Core Modules
32: The function 32: The function © Christine Crisp “Teach A Level Maths” Vol. 2: A2 Core Modules.
“Teach A Level Maths” Vol. 1: AS Core Modules
© Christine Crisp “Teach A Level Maths” Vol. 2: A2 Core Modules 22a: Integrating the Simple Functions.
“Teach A Level Maths” Vol. 2: A2 Core Modules
42: Differentiating Parametric Equations © Christine Crisp “Teach A Level Maths” Vol. 2: A2 Core Modules.
12: The Quotient Rule © Christine Crisp “Teach A Level Maths” Vol. 2: A2 Core Modules.
6: Roots, Surds and Discriminant © Christine Crisp “Teach A Level Maths” Vol. 1: AS Core Modules.
21:The Factor Theorem © Christine Crisp “Teach A Level Maths” Vol. 1: AS Core Modules.
39: Trigonometric ratios of 3 special angles © Christine Crisp “Teach A Level Maths” Vol. 1: AS Core Modules.
11: The Rule for Differentiation © Christine Crisp “Teach A Level Maths” Vol. 1: AS Core Modules.
19: Laws of Indices © Christine Crisp “Teach A Level Maths” Vol. 1: AS Core Modules.
30: Trig addition formulae © Christine Crisp “Teach A Level Maths” Vol. 2: A2 Core Modules.
9a: Differentiating Harder Products © Christine Crisp “Teach A Level Maths” Vol. 2: A2 Core Modules.
22: Division and The Remainder Theorem © Christine Crisp “Teach A Level Maths” Vol. 1: AS Core Modules.
22: Division and The Remainder Theorem © Christine Crisp “Teach A Level Maths” Vol. 1: AS Core Modules.
31: Arithmetic Sequences and Series © Christine Crisp “Teach A Level Maths” Vol. 1: AS Core Modules.
“Teach A Level Maths” Vol. 1: AS Core Modules
6: Discriminant © Christine Crisp “Teach A Level Maths” Vol. 1: AS Core Modules.
15: The Gradient of the Tangent as a Limit © Christine Crisp “Teach A Level Maths” Vol. 1: AS Core Modules.
© Christine Crisp “Teach A Level Maths” Vol. 2: A2 Core Modules 6: Differentiating.
24: Indefinite Integration © Christine Crisp “Teach A Level Maths” Vol. 1: AS Core Modules.
47: More Logarithms and Indices
3: Quadratic Expressions Expanding Brackets and Factorisation © Christine Crisp “Teach A Level Maths” Vol. 1: AS Core Modules.
25: Definite Integration © Christine Crisp “Teach A Level Maths” Vol. 1: AS Core Modules.
12: Tangents and Gradients © Christine Crisp “Teach A Level Maths” Vol. 1: AS Core Modules.
“Teach A Level Maths” Vol. 1: AS Core Modules
Cumulative Distribution Function
“Teach A Level Maths” Vol. 1: AS Core Modules
“Teach A Level Maths” Vol. 1: AS Core Modules
“Teach A Level Maths” Vol. 1: AS Core Modules
“Teach A Level Maths” Vol. 2: A2 Core Modules
“Teach A Level Maths” Vol. 2: A2 Core Modules
3: Quadratic Expressions Expanding Brackets and
Laws of Indices.
“Teach A Level Maths” Vol. 1: AS Core Modules
“Teach A Level Maths” Vol. 1: AS Core Modules
“Teach A Level Maths” Vol. 1: AS Core Modules
39: Trigonometric ratios of 3 special angles
“Teach A Level Maths” Vol. 1: AS Core Modules
“Teach A Level Maths” Vol. 1: AS Core Modules
“Teach A Level Maths” Vol. 1: AS Core Modules
“Teach A Level Maths” Vol. 2: A2 Core Modules
“Teach A Level Maths” Vol. 1: AS Core Modules
“Teach A Level Maths” Vol. 1: AS Core Modules
17: Circles, Lines and Tangents
“Teach A Level Maths” Vol. 1: AS Core Modules
47: More Logarithms and Indices
“Teach A Level Maths” Vol. 2: A2 Core Modules
“Teach A Level Maths” Vol. 1: AS Core Modules
“Teach A Level Maths” Vol. 1: AS Core Modules
“Teach A Level Maths” Vol. 2: A2 Core Modules
“Teach A Level Maths” Vol. 1: AS Core Modules
“Teach A Level Maths” Vol. 2: A2 Core Modules
“Teach A Level Maths” Vol. 1: AS Core Modules
“Teach A Level Maths” Vol. 1: AS Core Modules
“Teach A Level Maths” Vol. 1: AS Core Modules
“Teach A Level Maths” Vol. 1: AS Core Modules
11: Proving Trig Identities
“Teach A Level Maths” Vol. 2: A2 Core Modules
“Teach A Level Maths” Vol. 2: A2 Core Modules
17: Circles, Lines and Tangents
“Teach A Level Maths” Vol. 1: AS Core Modules
“Teach A Level Maths” Vol. 2: A2 Core Modules
Presentation transcript:

“Teach A Level Maths” Vol. 2: A2 Core Modules 27: Integration by Substitution Part 2 © Christine Crisp

Module C3 Module C4 AQA Edexcel OCR "Certain images and/or photos on this presentation are the copyrighted property of JupiterImages and are being used with permission under license. These images and/or photos may not be copied or downloaded without permission from JupiterImages"

A useful example of integration by substitution is to find We write Let So,

Using the 3rd law of logs,

We have already shown that Since indefinite integration is the reverse of differentiation, We can show this result directly by using a trig substitution. The following examples and exercises are difficult. You are unlikely to be asked to do them in an exam but you will find it useful to follow the method.

e.g. 1 Let N.B. Instead of defining u as a function of x we have defined x as a function of u. So, Use the identity: Can you spot what to do next?

So, where We need u from the substitution expression:

We can get a more general result by a similar method: Check that this is in your formula book. You can then quote it without proof and use it for any value of a. However, you may like to try using substitution for examples in the next exercise.

Exercise 1. Find using the substitution 2. Show that using the substitution this is an example of the general result

Solutions: 1. Let

where To subs. back: So,

2. Show that using the substitution Solution: So, Use the identity:

So,

SUMMARY The following results can be proved by trig substitutions:

The following slides contain repeats of information on earlier slides, shown without colour, so that they can be printed and photocopied. For most purposes the slides can be printed as “Handouts” with up to 6 slides per sheet.

e.g. 1 Let N.B. Instead of defining u as a function of x we have defined x as a function of u. So, Use the identity:

So, We need u from the substitution expression: where

2. Show that using the substitution Solution: So, Use the identity:

So,