High Energy DIS after HERA?… The LHeC Project Paul Newman Birmingham University, (for the LHeC study group) Oxford Seminar 14 June 2011

Slides:



Advertisements
Similar presentations
Luca Stanco - PadovaEW and NP at HERA, Photon EW at HERA Luca Stanco – INFN Padova on behalf of ZEUS and H1 collaborations and RELATED NEW PHYSICS.
Advertisements

Luca Stanco HERA 3: The Physics Case 12 Maggio 2003 – CN1 What we learned from HERA-1 ? What is coming from HERA-2 ? What is left out ?
Inclusive measurements at HERA from low to high x Olaf Behnke (DESY) on behalf of ISMD2013, Chicago, USA 17 th September
Future High Energy Electron – Hadron Scattering: The LHeC Project
The LHeC Project: Deep Inelastic Scattering with E e =70GeV and E p =7TeV P.Newman, Birmingham … with … J. Dainton, M. Klein, E. Perez, F. Willeke hep-ex/ ,
Heavy Ion Physics and the Large Hadron electron Collider Paul Newman Birmingham University … for the LHeC Study Group Strangeness in Quark Matter Birmingham,
Future High Energy Electron Proton Scattering: The LHeC Project
Future High Energy Electron Proton Scattering … The LHeC Project Paul Newman Birmingham University, (for LHeC study group) Manchester Seminar 7 March 2012.
First results from the ATLAS experiment at the LHC
Peter Schleper, Hamburg University SUSY07 Non-SUSY Searches at HERA 1 Non-SUSY Searches at HERA Peter Schleper Hamburg University SUSY07 July 27, 2007.
Low x meeting, Sinai Alice Valkárová on behalf of H1 collaboration LOW x meeting 2005, Sinaia H1 measurements of the structure of diffraction.
Steve Maxfield. 920 GeV protons on 27.6 GeV electrons or positrons →318 GeV centre of mass H1 (was) in the HERA ep ring at DESY.
Low x workshop Helsinki 2007 Joël Feltesse 1 Inclusive F 2 at low x and F L measurement at HERA Joël Feltesse Desy/Hamburg/Saclay On behalf of the H1 and.
IV Convegno Nazionale Fisica ALICE, Palau, Andrea Dainese 1 Andrea Dainese (INFN Legnaro) Charm as a probe of small-x gluons at LHC.
Longitudinal Spin at RHIC 29 th Winter Workshop on Nuclear Dynamics February 7, 2013 Cameron McKinney.
LHeC - Detector Layout Tracker HCAL Solenoid Dipole Muon Detector Fwd Calorimeter Inserts Bwd Calorimeter Inserts p/A e∓e∓ EMC Dipole The Large Hadron.
Diffractive DIS with E e =70GeV and E p =7TeV at the LHeC For general physics aim and sketch of machine design, see plenary talk of E. Perez … … what could.
Max Klein LHeC pdf DIS Parton Distributions from the LHeC Max Klein (U.Liverpool)
Recent Electroweak Results from the Tevatron Weak Interactions and Neutrinos Workshop Delphi, Greece, 6-11 June, 2005 Dhiman Chakraborty Northern Illinois.
QCD Studies at HERA Ian C. Brock Bonn University representing the ZEUS and H1 Collaborations.
1 Hadronic In-Situ Calibration of the ATLAS Detector N. Davidson The University of Melbourne.
2/21/2008 P5 neutrino session1 Conventional neutrino experiments Heidi Schellman P5 February 21, 2008.
Paul Laycock University of Liverpool BLOIS 2007 Diffractive PDFs.
Tobias Haas: Recent results from HERA The Dynamics of Proton Structure: Recent Results from HERA 23 August, 2005 Tobias Haas Deutsches Elektronensynchrotron.
CDR, JPhysG39(2012) High Precision DIS with the LHeC A M Cooper-Sarkar For the LHeC study group The LHeC- a Large Hadron-Electron Collider ~
Inclusive Jets in ep Interactions at HERA, Mónica V á zquez Acosta (UAM) HEP 2003 Europhysics Conference in Aachen, July 19, Mónica Luisa Vázquez.
Luca Stanco - PadovaQCD at HERA, LISHEP pQCD  JETS Luca Stanco – INFN Padova LISHEP 2006 Workshop Rio de Janeiro, April 3-7, 2006 on behalf of.
Working Group C: Hadronic Final States David Milstead The University of Liverpool Review of Experiments 27 experiment and 11 theory contributions.
Experimental Approach to Nuclear Quark Distributions (Rolf Ent – EIC /15/04) One of two tag-team presentations to show why an EIC is optimal to access.
Parton Model & Parton Dynamics Huan Z Huang Department of Physics and Astronomy University of California, Los Angeles Department of Engineering Physics.
Electron Deuteron Scattering with H1 at HERA ■ Introduction ■ Physics with deuterons ■ H1 upgrade for ed running ■ Possible further studies and the necessary.
Particle Physics Chris Parkes Experimental QCD Kinematics Deep Inelastic Scattering Structure Functions Observation of Partons Scaling Violations Jets.
16/04/2004 DIS2004 WGD1 Jet cross sections in D * photoproduction at ZEUS Takanori Kohno (University of Oxford) on behalf of the ZEUS Collaboration XII.
Tobias Haas: Introduction to HERA An Introduction to HERA Physics DESY Summer Student Program 16/17 August, 2005 Tobias Haas DESY, Hamburg.
Neutral Current Deep Inelastic Scattering in ZEUS The HERA collider NC Deep Inelastic Scattering at HERA The ZEUS detector Neutral current cross section.
LHeC - Detector Layout Tracker HCAL Solenoid Dipole Muon Detector Fwd Calorimeter Inserts Bwd Calorimeter Inserts p/A e∓e∓ EMC Dipole Abstract The Large.
Precision Cross section measurements at LHC (CMS) Some remarks from the Binn workshop André Holzner IPP ETH Zürich DIS 2004 Štrbské Pleso Štrbské Pleso.
CERN Evaluation Meeting, Bergen, April 2009Joakim Nystrand, University of Bergen Future electron-proton and electron-nucleus colliders, eRHIC and.
Beata Krupa Institute of Nuclear Physics Polish Academy of Sciences The study of the photon structure functions at the ILC energy range LCWS –
Report from India Topical Conference on Hadron Collider Physics XIII Jan 14-20, TIFR, India Naohito Saito RIKEN/ RIKEN BNL Research Center.
Measurements with Polarized Hadrons T.-A. Shibata Tokyo Institute of Technology Aug 15, 2003 Lepton-Photon 2003.
16/17 August 2005 Tobias Haas: HERA II An Introduction to HERA Physics DESY Summer Student Program 16/17 August, 2005 Tobias Haas DESY, Hamburg.
Searching for New Matter with the D0 Experiment Todd Adams Department of Physics Florida State University September 19, 2004.
DIS Conference, Madison WI, 28 th April 2005Jeff Standage, York University Theoretical Motivations DIS Cross Sections and pQCD The Breit Frame Physics.
Hadron Structure 2009 Factorisation in diffraction Alice Valkárová Charles University, Prague Representing H1 and ZEUS experiments Hadron structure.
Recent multiplicity studies at ZEUS, Michele Rosin U. WisconsinHadron Structure 2004, Sept. 1st University of Wisconsin, Madison on behalf of the.
Isabell-A. Melzer-Pellmann DIS 2007 Charm production in diffractive DIS and PHP at ZEUS Charm production in diffractive DIS and PHP at ZEUS Isabell-Alissandra.
1 Heavy Flavour Content of the Proton Motivation Experimental Techniques charm and beauty cross sections in DIS for the H1 & ZEUS Collaborations Paul Thompson.
Physics Potential of an ep Collider at the VLHC  Why ep? When?  Physics Results from the first ep Collider – HERA  Future ep Physics Priorities  Perturbative.
H1 and ZEUS Structure functions at HERA α s and PDFs Summary/Outlook Tomáš Laštovička (H1 collaboration) DESY Zeuthen, Charles University Prague at LLWI2003,
A. Bertolin on behalf of the H1 and ZEUS collaborations Charm (and beauty) production in DIS at HERA (Sezione di Padova) Outline: HERA, H1 and ZEUS heavy.
XXI Physics in Collision Conference Seoul Korea June Christopher M. Cormack Rutherford Appleton Laboratory High Q 2 Physics.
Mean Charged Multiplicity in DIS, Michele Rosin U. WisconsinZEUS Collaboration Meeting, Oct. 21st Analysis Update: Mean Charged Multiplicity in.
Costas Foudas, Imperial College, Jet Production at High Transverse Energies at HERA Underline: Costas Foudas Imperial College
Unpolarized Physics Program HERA-3 Workshop, MPI, 17-Dec-2002 A. Caldwell Physics Topics: eP, eD, eA Detector Requirements Accelerator Requirements Sources:
QCD Prospects for ATLAS Rainer Stamen Universität Mainz On behalf of the ATLAS collaboration QCD 06 Montpellier, July 3rd 2006.
N. RaicevicMoriond QCD Structure Functions and Extraction of PDFs at HERA Nataša Raičeviċ University of Montenegro On behalf of the H1 and ZEUS Collaborations.
1 Proton Structure Functions and HERA QCD Fit HERA+Experiments F 2 Charged Current+xF 3 HERA QCD Fit for the H1 and ZEUS Collaborations Andrew Mehta (Liverpool.
Search for New Physics at HERA Andrea Parenti (DESY) for the H1 and ZEUS collaborations CIPANP 2009 S. Diego, 28/05/2009.
Inclusive jet photoproduction at HERA B.Andrieu (LPNHE, Paris) On behalf of the collaboration Outline: Introduction & motivation QCD calculations and Monte.
EIC NAS review Charge-2 What are the capabilities of other facilities, existing and planned, domestic and abroad, to address the science opportunities.
Nuclear Physics: The Liquid Drop Model Bohr +Wheeler
Explore the new QCD frontier: strong color fields in nuclei
EIC NAS review Charge-2 What are the capabilities of other facilities, existing and planned, domestic and abroad, to address the science opportunities.
Summary Session 3 Standard Model and Beyond
Central Exclusive Production of BSM Higgs bosons decaying to jets
Overview The Structure of the Proton Quark-Parton Model lecture-1
F2/FL with HERA III/eRHIC A. Caldwell, Max-Planck-Institut f. Physik
DIS 2004 XII International Workshop
HERA – LHC workshop Final Meeting March 2005, DESY
Presentation transcript:

High Energy DIS after HERA?… The LHeC Project Paul Newman Birmingham University, (for the LHeC study group) Oxford Seminar 14 June (E e =140GeV and E p =7TeV) … work in progress from ECFA/CERN/NuPECC workshop on ep/eA physics possibilities at the LHC

Material Taken from Draft Conceptual Design Report Around 500 pages Summarising work of ~200 participants over 5 years Nobody works full time on LHeC yet Due for release in Autumn 2011

LHeC is the latest & most promising idea to take ep physics to the TeV centre-of-mass scale … … at high luminosity - A brief history of ep Physics - How to build an ep Collider using the LHC - Detector considerations - Physics motivation- BSM physics - Precision QCD / EW - Low x / high parton densities - Electron – ion collisions - Timeline and outlook Contents

Electron Scattering Experiments “It would be of great scientific interest if it were possible to have a supply of electrons … of which the individual energy of motion is greater even than that of the alpha particle.” [Ernest Rutherford, Royal Society, London, (as PRS) 30 Nov 1927] 1950s Hoffstadter First observation of finite proton size using 2 MeV e beam

SLAC 1969: Electron Energies 20 GeV Proposal: “A general survey of the basic cross sections which will be useful for future proposals”

First Observation Of Proton Structure Nobel Prize 1990

DESY, Hamburg e (27.5 GeV) P (920 GeV) Equivalent to a 50 TeV beam on a fixed target proton ~2500 times more than SLAC! Around 500 pb -1 per experiment HERA ( ) … the only ever collider of electron beams with proton beams ZEUS e (27.5 GeV) P (920 GeV)

Basic Deep Inelastic Scattering Processes Q 2 = -q 2 :resolving power of interaction x = Q 2 / 2q.p : fraction of struck quark / proton momentum (q) Neutral Current Charged Current

Proton “Structure”? Proton constituents … 2 up and 1 down valence quarks … and some gluons … and some sea quarks … and lots more gluons and sea quarks …  strong interactions induce rich and complex `structure’ of high energy proton interactions! Scattering electrons from protons at  s > 300GeV at HERA has established detailed proton structure & provided a testing ground for QCD over a huge kinematic range … parton density functions u u d

How is the Proton’s Energy Shared out? A proton with high energy A quark carrying energy fraction, x Energy carried by quarks and gluons as a function of x  At TeV / LHC energies, a proton looks like a lot of gluons

HERA’s greatest legacy H1/ZEUS/joint publications still coming for 1-2 years Further progress requires higher energy and luminosity … Parton densities of proton in a large x range Some limitations: - Insufficient lumi for high x precision - Assumptions on quark Flavour decomposition - No deuterons … u and d not separated - No heavy ions

HERA kinematic range Unprecedented low x and high Q 2 coverage in DIS! HERA + QCD factorisation  parton densities in full x range of LHC rapidity plateau Well established `DGLAP’ evolution equations generalise to any scale (for not too small x) DGLAP e.g. pp dijets at central rapidity: x 1 =x 2 =2p t /  s

Currently Approved Future of High Energy DIS

Previously considered as `QCD explorer’ (also THERA) Main advantages: low interference with LHC, high E e (  150 GeV?) and lepton polarisation, LC relation Main difficulties: lower luminosity <10 33 cm -2 s -1 ? at reasonable power, no previous experience exists First considered (as LEPxLHC) in 1984 ECFA workshop Main advantage: high peak lumi obtainable (~ cm -2 s -1 ) Main difficulties: building round existing LHC, e beam energy (60GeV?) and lifetime limited by synchrotron radiation LINAC-RING RING-RING How Could ep be Done using LHC? … whilst allowing simultaneous ep and pp running …

Accelerator Design Main design constraint: power consumption < 100 MW Multi-Lab Involvement Novosibirsk, BNL, CERN, Cockcroft, Cornell, DESY, EPFL Lausanne, Jlab, KEK, Liverpool, SLAC, TAC Turkey, NTFU Norway, INFN … Ring-Ring Design Installation 1m above LHC and 60cm inside By-passes of existing experiments containing RF Challenging, but no show stopper yet

Magnets for Electron Ring (CERN, Novisibirsk) First prototypes 5m long (35cm) 2 transverse 127 T/m gradient Compact and light 3040 bending dipole magnets 736 arc quadrupole magnets [1.2m long]

Accelerator Design in Linac-Ring Configuration 4 separate designs for 60 GeV electron beam (CERN, Jlab, BNL) 500 MeV injection Two 10 GeV linacs, 3 returns Energy recovery in same structures (94%)? More ambitious: Pulsed single 140 GeV Linac 31.5 MV/m (ILC)

Design Parameter Summary electron beamRRLR e- energy at IP[GeV] luminosity [10 32 cm -2 s -1 ] polarization [%]4090 bunch population [10 9 ] e- bunch length [mm]100.3 bunch interval [ns]2550 transv. emit.  x,y [mm] 0.58, rms IP beam size  x,y [  m] 30, 1677 e- IP beta funct.  * x,y [m] 0.18, full crossing angle [mrad] geometric reduction H hg repetition rate [Hz]N/A 10 beam pulse length [ms]N/A 5 ER efficiencyN/A94%N/A average current [mA] tot. wall plug power[MW]100 proton beamRRLR bunch pop. [10 11 ]1.7 tr.emit.  x,y [  m] 3.75 spot size  x,y [  m] 30, 167  * x,y [m] 1.8, bunch spacing [ns]25 RR= Ring – Ring LR =Linac –Ring Include deuterons (new) and lead (exists) 10 fb -1 per year looks possible

Detector Acceptance Requirements Access to Q 2 =1 GeV 2 in ep mode for all x > 5 x requires scattered electron acceptance to 179 o Similarly, need 1 o acceptance in outgoing proton direction to contain hadrons at high x (essential for good kinematic reconstruction)

Experimental Precision Aims The new collider … - should be ~100 times more luminous than HERA The new detector - should be at least 2 times better than H1 / ZEUS Requirements to reach a per-mille  s (c.f. 1-2% now) … Simulated `pseudo-data’ for F 2, F L, F 2 D …produced on this basis

Detector Overview

Calorimeters Liquid Argon / Tile technologies under study

Tracking Region Full angular coverage, long tracking region  1 o acceptance Technologies under discussion (lots of ideas!)

A GEANT4 Simulated Low x Event

Searches For New Physics The (pp) LHC has much better discovery potential than the LHeC (unless electron beam energy can increase to > 500 GeV) However, LHeC is competitive with LHC in cases where initial state lepton is an advantage and offers cleaner final states Combined LHC / LHeC info can confirm and clarify new physics e.g. Expected quark compositeness limits below m at LHeC … big improvement on HERA, but already beaten by LHC in its first year

Lepton-quark Resonances Yukawa coupling, Leptoquarks appear in many extensions to SM… explain apparent symmetry between lepton and quark sectors. Scalar or Vector color triplet bosons Carrying L, B and fractional Q, complex spectroscopy? (Mostly) pair produced in pp, single production in ep. LHeC discovery potential for masses < TeV for 10 fb -1 – Comparable to LHC, but cleaner final states LHC pair prod LHeC (10 fb -1 )

Determining Leptoquark Quantum Numbers Single production gives access to quantum numbers: - fermion number (below) - spin (decay angular distributions) - chiral couplings (beam lepton polarisation asymmetry)

Excited Leptons LHeC gives best sensitivity in this scenario … LHeC sensitivity with 1-10 fb-1 depending on E e

Complementarity between LHC and LHeC Contact interaction term introduced in LHC pseudo-data for high mass Drell-Yan Even if new physics looks rather different from SM, wide range of high x BSM effects can be accomodated in DGLAP fits due to poor current high x PDF constraints Better high x precision at high lumi LHeC could disentangle …

Higgs  bbbar Coupling Sizeable CC (WW) x-section  Few1000 events / year before cuts Strongly dependent on m H  Novel production mechanism  Clean signal: H + j + p t miss First study with 2 b-tags Backgrounds (jets in NC, CC, top) suppressed with cuts on jet multiplicity, total E t, event kinematics, missing p t ~ 100 events / year after cuts?

LHeC Impact on Parton Densities Full NC/CC sim (with systs giving per mille  s ) & NLO DGLAP fit using HERA technology… … big impact for both low x (kinematic range) and high x (luminosity) … full flavour decomposition possible Gluonu valence

PDFs & EW Couplings Using ZEUS fitting code, HERA + LHeC data … EW couplings free E e = 100 GeV, L = 10+5 fb -1, P = +/- 0.9 Weak mixing angle can also be obtained ZEUS

Cross Sections and Rates for Heavy Flavours HERA 27.5 x 920 Charm Beauty cc sW  c bW  t ttbar c.f. luminosity of ~10 fb -1 per year … [10 10 / 10 fb -1 ] [10 3 / 10 fb -1 ] [10 5 / 10 fb -1 ] [ / 10 fb -1 ] [10 8 / 10 fb -1 ]

Flavour Decomposition Precision c, b measurements (modern Si trackers, beam spot 15 * 35  m 2, increased HF rates at higher scales). Systematics at 10% level  beauty is a low x observable!  s, sbar from charged current  Similarly Wb  t (Assumes 1 fb -1 and - 50% beauty, 10% charm efficiency - 1% uds  c mistag probability. - 10% c  b mistag) LHeC 10 o acceptance LHEC 1 o acceptance s quarks

Inclusive Jets & QCD Dynamics Also differential in Q 2 with high precision to beyond Q 2 = 10 5 GeV 2  s up to scale ~ 400 GeV Detailed studies of QCD dynamics, including novel low x effects in regions not probed at HERA and (probably) not at LHC

Low-x Physics and Parton Saturation Somewhere & somehow, the low x growth of cross sections must be tamed to satisfy unitarity … non-linear effects Parton level language  recombination gg  g Saturation effects beyond x dependent saturation scale Weak hints at saturation HERA (but at very low Q 2 )

Strategy for making the target blacker Enhance target `blackness’ by: 1) Probing lower x at fixed Q 2 in ep [evolution of a single source] 2) Increasing target matter in eA [overlapping many sources at fixed kinematics … density ~ A 1/3 ~ 6 for Pb … worth 2 orders of magnitude in x] LHeC delivers a 2-pronged approach:

Extrapolating HERA models of F 2 ‘Modern’ dipole models, containing saturation effects & low x behaviour derived from QCD give a much narrower range … we should be able to distinguish between different models for the onset of saturation effects NLO DGLAP uncertainties low x and Q 2 With 1 fb -1 (1 year at cm -2 s -1 ), F 2 stat. < 0.1%, syst, 1-3% F L measurement to 8% with 1 year of varying E e or E p

Fitting for the Gluon with LHeC F 2 and F L Including LHeC data in NNPDF DGLAP fit approach … … sizeable improvement in error on low x gluon when both LHeC F 2 & F L data are included. … but would DGLAP fits fail if non-linear effects present? HERA + LHeC F 2 HERA + LHeC F 2, F L (Q 2 = 2 GeV 2 )

Can Parton Saturation be Established in LHeC? Conclusion: clearly establishing non-linear effects needs a minimum of 2 observables … (F 2 c may work in place of F L )… Simulated LHeC F 2 and F L data based on a dipole model containing low x saturation (FS04-sat)… … NNPDF (also HERA framework) DGLAP QCD fits cannot accommodate saturation effects if F 2 and F L both fitted

Exclusive / Diffractive Channels and Saturation 1)[Low-Nussinov] interpretation as 2 gluon exchange enhances sensitivity to low x gluon 1)Additional variable t gives access to impact parameter (b) dependent amplitudes  Large t (small b) probes densest packed part of proton?

`Cleanly’ interpreted as hard 2g exchange coupling to qqbar dipole … enhanced sensitivity to low x gluon c and c-bar share energy equally, simplifying VM wavefunction Clean experimental signature (just 2 leptons) … LHeC reach extends to x g ~ at Q 2 ~ 3 GeV 2 (MNRT etc) X g ~ (Q 2 + M V 2 ) / (Q 2 + W 2 ) Q 2 = (Q 2 + M V 2 ) / 4 Simulations of elastic J/    photoproduction  scattered electron untagged, 1 o acceptance for muons (similar method to H1 and ZEUS) Elastic J/  Photoproduction: Golden Channel?

Simulation of J/  Photoproduction e.g. “b-Sat” Dipole model - “eikonalised”: with impact-parameter dependent saturation - “1 Pomeron”: non-saturating Significant non-linear effects expected in LHeC kinematic range. Data shown are extrapolations of HERA power law fit for E e = 150 GeV…  Sat n smoking gun? [2 fb -1 ]

What is Initial State of LHC AA Collisions? Very limited x, Q 2 and A range for F 2 A so far (fixed target experiments covered x >~ ) LHeC extends kinematic range by 3-4 orders of magnitude with very large A Gluons from saturated nuclei  Glasma?  QGP  Reconfinement

Current Knowledge: Nuclear Parton Densities R i = Nuclear PDF i / (A * proton PDF i) Nuclear parton densities don’t scale with A due to Fermi motion, shadowing corrections … All parton types poorly constrained for x < Gluon density essentially unknown

LHeC ePb F 2 measurement has huge impact relative to current uncertainties Striking effect on quark sea and gluons in particular High x gluon uncertainty remains large Study of Impact of e-Pb LHC data

Schedule and Remarks Aim to start operation by 2022 [new phase of LHC]  cf HERA: Proposal 1984 – Operation LEP: Proposal 1983 – Operation 1989 The major accelerator and detector technologies exist Cost is modest in major HEP project terms Steps: Conceptual Design Report, 2011 Evaluation within CERN / European PP/NP strategy If positive, move towards a TDR 2013/14 Year Prototyping- testing Production main components Civil engineering Installation Operation

Summary LHC is a totally new world of energy and luminosity! LHeC proposal aims to exploit it for lepton-hadron scattering … ep complementing LHC and next generation ee facility for full Terascale exploration Ongoing ECFA/CERN/NuPECC workshop has gathered many accelerator, theory & experimental colleagues  Conceptual Design Report CDR being finalised. Will be available by Autumn [More at