Www.tyndall.ie Lorenzo O. Mereni Valeria Dimastrodonato Gediminas Juska Robert J. Young Emanuele Pelucchi Physical properties of highly uniform InGaAs.

Slides:



Advertisements
Similar presentations
Tuning eigenstate-energies of InGaAs Quantum-Dots using lateral electric fields W. Prestel, H. Krenner, J. J. Finley St. Petersburg – JASS 2004.
Advertisements

PART IV: EPITAXIAL SEMICONDUCTOR NANOSTRUCTURES  Properties of low-dimensional quantum confined semiconductor nanostructures  Fabrication techniques.
Size-dependent recombination dynamics in ZnO nanowires
Phonon coupling to exciton complexes in single quantum dots D. Dufåker a, K. F. Karlsson a, V. Dimastrodonato b, L. Mereni b, P. O. Holtz a, B. E. Sernelius.
Strong coupling between Tamm Plasmon and QW exciton
Giant Rabi splitting in metal/semiconductor nanohybrids
2003/04/071 Characteristic of 850-nm InGaAs/AlGaAs Vertical-Cavity Surface-Emitting Lasers Master’s thesis of Yuni Chang Speaker:Han-Yi Chu National Changhua.
Biexciton-Exciton Cascades in Graphene Quantum Dots CAP 2014, Sudbury Isil Ozfidan I.Ozfidan, M. Korkusinski,A.D.Guclu,J.McGuire and P.Hawrylak, PRB89,
GaAs band gap engineering by colloidal PbS quantum dots Bruno Ullrich Instituto de Ciencias Físicas, Universidad Nacional Autónoma de México, Cuernavaca,
True single photon sources V+ Particle like Wave-like during propagation Particle like Single atom or ion (in a trap) Single dye molecule.
1. INTRODUCTION: QD MOLECULES Growth Direction VERTICAL MOLECULES LATERAL MOLECULES e-h+e-h+ 1. Electron states coupling (e - Tunneling ) 2. Hole states.
Indistinguishability of emitted photons from a semiconductor quantum dot in a micropillar cavity S. Varoutsis LPN Marcoussis S. Laurent, E. Viasnoff, P.
David Gershoni The Physics Department, Technion-Israel Institute of Technology, Haifa, 32000, Israel and Joint Quantum Institute, NIST and University of.
“Quantum computation with quantum dots and terahertz cavity quantum electrodynamics” Sherwin, et al. Phys. Rev A. 60, 3508 (1999) Norm Moulton LPS.
Deterministic Coupling of Single Quantum Dots to Single Nanocavity Modes Richard Younger Journal Club Sept. 15, 2005 Antonio Badolato, kevin Hennessy,
Research Highlights – N. Pelekanos
L.Besombes Y.Leger H. Boukari D.Ferrand H.Mariette J. Fernandez- Rossier CEA-CNRS team « Nanophysique et Semi-conducteurs » Institut Néel, CNRS Grenoble,
Quantum Dot NanoCavity Emission Tuned by a Circular Photonic Crystal Lattice CNR-INFM Lecce (Italy) National Nanotechnology Lab Web:
Guillaume TAREL, PhC Course, QD EMISSION 1 Control of spontaneous emission of QD using photonic crystals.
An Introduction to Quantum Dot Spectrometer Amir Dindar ECE Department, University of Massachusetts, Lowell.
Optical control of electrons in single quantum dots Semion K. Saikin University of California, San Diego.
Single Quantum Dot Optical Spectroscopy
Quantum Dots. Optical and Photoelectrical properties of QD of III-V Compounds. Alexander Senichev Physics Faculty Department of Solid State Physics
Quantum Dots in Photonic Structures
Inverted High-efficiency Triple-junction Solar Cells Based on GaAs Substrates EECS 235 Paper Review Presentation Xiaojun Zhang.
Optical properties and carrier dynamics of self-assembled GaN/AlGaN quantum dots Ashida lab. Nawaki Yohei Nanotechnology 17 (2006)
GaAs QUANTUM DOT COM Ray Murray. Why Quantum Dots? Novel “atom-like” electronic structure Immunity to environment Epitaxial growth Well established device.
Single Photon Emitters and their use in Quantum Cryptography Presentation by: Bram Slachter Supervision: Dr. Ir. Caspar van der Wal.
Overview of course Capabilities of photonic crystals Applications MW 3:10 - 4:25 PMFeatheringill 300 Professor Sharon Weiss.
InAs on GaAs self assembled Quantum Dots By KH. Zakeri sharif University of technology, Spring 2003.
Page 1 Band Edge Electroluminescence from N + -Implanted Bulk ZnO Hung-Ta Wang 1, Fan Ren 1, Byoung S. Kang 1, Jau-Jiun Chen 1, Travis Anderson 1, Soohwan.
InGaN solar cells show promise for concentrated photovoltaic applications Jingyu Lin, Texas Tech University, DMR InGaN alloys recently emerge as.
(In,Ga)As/(Al,Ga)As quantum wells on GaAs(110) R. Hey, M. Höricke, A. Trampert, U. Jahn, P. Santos Paul-Drude-Institut für Festkörperelektronik, Berlin.
Light Emitting Diode Sumitesh Majumder.
T. Smoleński 1, M. Goryca 1,2, T. Kazimierczuk 1, J. A. Gaj 1, P. Płochocka 2, M. Potemski 2,P. Wojnar 3, P. Kossacki 1,2 1. Institute of Experimental.
Brad Gussin John Romankiewicz 12/1/04 Quantum Dots: Photon Interaction Applications.
Technion – Israel Institute of Technology Physics Department and Solid State Institute Eilon Poem, Stanislav Khatsevich, Yael Benny, Illia Marderfeld and.
Observation of Excited Biexciton States in CuCl Quantum Dots : Control of the Quantum Dot Energy by a Photon Itoh Lab. Hiroaki SAWADA Michio IKEZAWA and.
Photo-induced ferromagnetism in bulk-Cd 0.95 Mn 0.05 Te via exciton Y. Hashimoto, H. Mino, T. Yamamuro, D. Kanbara, A T. Matsusue, B S. Takeyama Graduate.
Exciton and Biexciton Energies in GaN/AlN Quantum Dots G. Hönig, A. Schliwa, D. Bimberg, A. Hoffmann Teilprojekt A5 Institut für Festkörperphysik Technische.
Techniques for Synthesis of Nano-materials
Ordered Quantum Wire and Quantum Dot Heterostructures Grown on Patterned Substrates Eli Kapon Laboratory of Physics of Nanostructures Swiss Federal Institute.
Micro-optical studies of optical properties and electronic states of ridge quantum wire lasers Presented at Department of Physics, Graduate.
Photoluminescence-excitation spectra on n-type doped quantum wire
Ultrafast Spectroscopy of Quantum Dots (QDs) Experimentelle Physik IIb FB Physik, Universität Dortmund Ulrike Woggon With thanks to: M.V. Artemyev, P.
Temperature behaviour of threshold on broad area Quantum Dot-in-a-Well laser diodes By: Bhavin Bijlani.
T-shaped quantum-wire laser
Resonant medium: Up to four (Zn,Cd)Se quantum wells. Luminescence selection is possible with a variation of the Cd-content or the well width. The front.
Rome Sept 2011 Leeds Jan 2012 Impact of Non-Linear Piezoelectricity on Excitonic Properties of III-N Semiconductor Quantum Dots Joydeep Pal Microelectronics.
Itoh Laboratory Masataka Yasuda
Electrochromic Nanocrystal Quantum Dots Prof. Philippe Guyot-Sionnest’s group (Univ. of Chigaco) : 1. Electrochromic Nanocrystal Quantum Dots, Science.
Conductive epitaxial ZnO layers by ALD Conductive epitaxial ZnO layers by ALD Zs. Baji, Z. Lábadi, Zs. E. Horváth, I. Bársony Research Centre for Natural.
Radiation effects in nanostructures: Comparison of proton irradiation induced changes on Quantum Dots and Quantum Wells.* R. Leon and G. M. Swift Jet Propulsion.
Microstructural Evolution near the InGaAs/GaAs Stranski-Krastanow Transformation Rosa Leon Jet Propulsion Laboratory, California Institute of Technology,
Growth and optical properties of II-VI self-assembled quantum dots
4.12 Modification of Bandstructure: Alloys and Heterostructures Since essentially all the electronic and optical properties of semiconductor devices are.
Confinement of Excitons in Strain-engineered InAs/InGaAs/GaAs Metamorphic Quantum Dots By Shaukat Ali Khattak1,2 Manus Hayne1, Luca Seravalli3, Giovanna.
G. Kioseoglou SEMICONDUCTOR SPINTRONICS George Kioseoglou Materials Science and Technology, University of Crete Spin as new degree of freedom in quantum.
Substrate dependence of self-assembled quantum dots
Conclusion QDs embedded in micropillars are fabricated by MOCVD and FIB post milling processes with the final quality factor about Coupling of single.
Evaluation of Polydimethlysiloxane (PDMS) as an adhesive for Mechanically Stacked Multi-Junction Solar Cells Ian Mathews Dept. of Electrical and Electronic.
Lead beneficiary: ROME
An Efficient Source of Single Photons: A Single Quantum Dot in a Micropost Microcavity Matthew Pelton Glenn Solomon, Charles Santori, Bingyang Zhang, Jelena.
Fabrication of GaAs nanowires for solar cell devices
Fabrication of Ge quantum dot circle on masked Si substrate
Magnetic control of light-matter coupling for a single quantum dot embedded in a microcavity Qijun Ren1, Jian Lu1, H. H. Tan2, Shan Wu3, Liaoxin Sun1,
Yingjie Ma, Jian Cui*, Yongliang Fan, Zhenyang Zhong, Zuimin Jiang
Entangled Photons from Quantum Dots
Project 1.4: Hydrogenation of dilute nitrides for single photon emitters in photonic crystals Saeed Younis.
High-efficiency green light-emitting diodes
Presentation transcript:

Lorenzo O. Mereni Valeria Dimastrodonato Gediminas Juska Robert J. Young Emanuele Pelucchi Physical properties of highly uniform InGaAs Pyramidal Quantum Dots with GaAs barriers: the Fine Structure Splitting Epitaxy and Physics of Nanostructures Group: Tyndall National Institute University College of Cork Ireland

Why Quantum Dots??? As Development Tools for novel technologies and materials As Instruments of investigation for the properties of the low dimensional solid state

Characteristics of an ideal, easy-to-use QD source 1 -control over QD position and distance between QDs 2 -easy tunability of the QD electronic properties 3 -allow engineering of the coupling (i.e. allow the formation of artificial "molecules") and stacking of QDs in an easy and controllable way 4 -allow a single or stack of dots to be easily addressed and controlled electrically, and not only optically 5 -“identical” dots 6 -High optical quality

SELF ASSEMBLED AND SITE CONTROLLED: TWO DIFFERENT APPROACHES Self assembled Site controlled

GaAs (111)B substrate GaAs SiO 2 Resist deposited and exposed to UV light SiO 2 removal with HFResist removal Wet etching of tetrahedrical recesses Ready for growth! WET LITHOGRAPHY

Easy patterning and growth process

M. Baier, E. Pelucchi, S. Watanabe, and E. Kapon, “High- uniformity of site-controlled pyramidal quantum dots grown on pre-patterned substrates”, Appl. Phys. Lett. 84, 1943 (2004). M. Baier,et al...” Single photon emission from site-controlled pyramidal quantum dots”, Appl. Phys. Lett. 84, 648 (2004). M. Baier, C. Constantin, E. Pelucchi, and E. Kapon, “ Electroluminescence from a single pyramidal quantum dot in a light- emitting diode”, Appl. Phys. Lett. 84, 1967 (2004). +single photon electrically pumped …M.H..Baier et al unpublished DOs AND DONTs OF PYRAMIDAL QUANTUM DOTS

InGaAs Dots with GaAs 1)Cladding Layer Al 55% Ga 45% As 2)GaAs barriers 3)Dot layer In 25% Ga 75% As – 0.5 nm nominal thickness 4)Vertical Quantum Wire σ = 1.2 meV FWHM = 2.8 meV L. O. Mereni et al., Appl. Phys. Lett. 94, (2009)

CAN WE MAKE ENTANGLED PHOTONS WITH THESE DOTS?

THE BIEXCITON-EXCITON CASCADE & FSS XX X 0 σ+σ+σ+σ+ σ+σ+σ+σ+ σ-σ-σ-σ- σ-σ-σ-σ- Electric fields Structural Asymmetries Structural Asymmetries Alloy Disorder H V V H FSS

(111): AN IDEAL PLATFORM FOR THE DEVELOPMENT OF ENTANGLED PHOTONS (111) Surfaces show a symmetry that has been indicated as ideal by many authors K. F. Karlsson., to appear in Phys. Rev. B 81 A.Schliwa et al., Phys. Rev. B 80, (2009) (111) Surfaces show a symmetry that has been indicated as ideal by many authors K. F. Karlsson., to appear in Phys. Rev. B 81 A.Schliwa et al., Phys. Rev. B 80, (2009) The design of the dots itself is conceived to be free of structural aymmetries No Splitting is expected a priori for geometrical reasons from these dots

OPTICAL SETUP HALF WAVEPLATE LINEAR POLARIZER MONOCHROMATOR CLOSED CYCLE CRYOSTAT

Mean FFS: 13 μeV σ = 4 μeV X XX

PHASE (μeV)

FURTHER INVESTIGATIONS In 0.25 Ga 0.65 As Mean FFS: 13 μeV σ = 4 μeV In 0.35 Ga 0.65 As Mean FFS: 20 μeV σ = 10 μeV AlGaAs barriers Mean FFS: ? σ = ? 15% (μeV)

Energy tuning (eV)

DOTS WITH NITROGEN DOTS WITH NITROGEN Small shift of the emission wavelenght Antibinding biexciton energy Splitting within the experimental error

Thank you for your attention Slann