Decay Spectroscopy at FAIR Using the Advanced Implantation Detector Array (AIDA) presented by Tom Davinson on behalf of the AIDA collaboration Tom Davinson.

Slides:



Advertisements
Similar presentations
The 26g Al(p, ) 27 Si Reaction at DRAGON Heather Crawford Simon Fraser University TRIUMF Student Symposium July 27, 2005.
Advertisements

Investigation of short-lived nuclei using RIBs
Recent achievements and future challenges of the Spanish research in experimental Nuclear Physics José Benlliure Universidad of Santiago de Compostela.
Boris Sharkov FAIR Joint Core Team
Towards a neutron target and Measuring (n, ɣ) cross sections of the r-process Lothar Buchmann TRIUMF.
Status of FAIR Boris Sharkov FAIR Joint Core Team.
Detector module development for the CBM Silicon Tracking System Anton Lymanets for the CBM collaboration Universität Tübingen, Kiev Institute for Nuclear.
Advanced Implantation Detector Array (AIDA): Update & Issues Tom Davinson School of Physics The University of Edinburgh presented by Tom Davinson on behalf.
Advanced Implantation Detector Array (AIDA): Update & Issues Tom Davinson School of Physics & Astronomy The University of Edinburgh presented by Tom Davinson.
Technical Solutions for High Vacuum Compatible FEE for the EXL Recoil Detector Vacuum operating pressure? bakeout temperature? what’s in the vacuum system,
Advanced Implantation Detector Array (AIDA): Update & Issues Tom Davinson School of Physics The University of Edinburgh presented by Tom Davinson on behalf.
Decay Spectroscopy at FAIR Using the Advanced Implantation Detector Array (AIDA) presented by Tom Davinson on behalf of the AIDA collaboration (Edinburgh.
RIBF P. Coleman-Smith, T. Davinson, A. Estrade, C. Griffins, L. Harkness-Brennan, G. Lorusso, K. Matsui, P. Morrall, S. Nishimura, V.
Decay Spectroscopy at FAIR Using the Advanced Implantation Detector Array (AIDA) presented by Tom Davinson on behalf of the AIDA collaboration (Edinburgh.
AIDA Update presented by Ian Lazarus on behalf of the AIDA collaboration (Edinburgh – Liverpool – STFC DL & RAL) Tom Davinson School of Physics & Astronomy.
Advanced Implantation Detector Array (AIDA): Update & Issues presented by Tom Davinson on behalf of the DESPEC-DSSD/AIDA collaboration Tom Davinson School.
SNS Spallation Neutrino Source 1 SNS layout GeV proton linear accelerator Accumulator ring Main target Stripping foil.
LYCCA: Lund - York - Cologne - CAlorimeter Status report L U N D U N I V E R S I T YU N I V E R S I T Y Nuclear Structure Group.
The Gamma-ray Large Area Space Telescope: UNDERSTANDING THE MOST POWERFUL ENERGY SOURCES IN THE UNIVERSE The GLAST LAT Silicon Strip Tracker-Converter.
ASICs for HiSpec and DeSpec Ian Lazarus NPG. Hispec and Despec.
AIDA Update presented by Tom Davinson on behalf of the AIDA collaboration (Edinburgh – Liverpool – STFC DL & RAL) Tom Davinson School of Physics & Astronomy.
ROGER CABALLERO FOLCH, Barcelona, 9 th November 2011.
A Silicon Disk Tracker in forward direction for STAR News since November 2000 Physics Capabilities capabilities Requirements / Potential Technologies Possible.
GLAST LAT Silicon Tracker Marcus ZieglerAPS April Meeting The GLAST Silicon Tracker Marcus Ziegler Santa Cruz Institute for Particle Physics University.
GLAST LAT Readout Electronics Marcus ZieglerIEEE SCIPP The Silicon Tracker Readout Electronics of the Gamma-ray Large Area Space Telescope Marcus.
GLAST LAT Readout Electronics Marcus ZieglerIEEE SCIPP The Silicon Tracker Readout Electronics of the Gamma-ray Large Area Space Telescope Marcus.
GLAST LAT Silicon Tracker Marcus ZieglerAPS April Meeting The GLAST Silicon Tracker Marcus Ziegler Santa Cruz Institute for Particle Physics University.
GLAST LAT Silicon Tracker Marcus ZieglerIEEE The Silicon Tracker Readout Electronics of the Gamma-ray Large Area Space Telescope Marcus Ziegler.
GLAST LAT Silicon Tracker Marcus ZieglerAPS April Meeting The GLAST Silicon Tracker Marcus Ziegler Santa Cruz Institute for Particle Physics University.
Decay Spectroscopy at FAIR with AIDA presented by Tom Davinson on behalf of the AIDA collaboration (Edinburgh – Liverpool – STFC DL & RAL) Tom Davinson.
Future Penning Trap Experiments at GSI / FAIR – The HITRAP and MATS Projects K. Blaum 1,2 and F. Herfurth 1 for the HITRAP and MATS Collaboration 1 GSI.
Advanced Implantation Detector Array (AIDA): Project Summary & Status Tom Davinson School of Physics & Astronomy The University of Edinburgh presented.
The FAIR Chance for Nuclear Astrophysics Elemental Abundances Core-collapse Supernovae The neutrino process The r-process nuclei in -Wind Neutron Stars.
The Gamma-ray Large Area Space Telescope: The GLAST LAT Silicon Strip Tracker-Converter Robert P. Johnson, U.C. Santa Cruz and the Santa Cruz Institute.
Fast Timing with Diamond Detectors Lianne Scruton.
Nuclear Astrophysics with the PJ Woods, University of Edinburgh.
FAIR/SFRS meeting at HIPHeikki Penttila Oct 6, 2008 Facility for Antiproton and Ion Research FAIR is An international accelerator facility of the ”next.
NUSTAR Nuclear Structure, Astrophysics, Reactions NUSTAR is the biggest collaboration in FAIR The collaboration unites 450 scientists from 98 institutions.
Tom Tom Davinson School of Physics DESPEC DSSD Working Group Status & Open Issues.
Lawrence Livermore National Laboratory Nicholas Scielzo Lawrence Fellow Physics Division, Physical Sciences LLNL-PRES Lawrence Livermore National.
Proton emission from deformed rare earth nuclei: A possible AIDA physics campaign Paul Sapple PRESPEC Decay Physics Workshop Brighton 12 January 2011.
Fundamental Interactions Physics & Instrumentation Conclusions Conveners: P. Mueller, J. Clark G. Savard, N. Scielzo.
SPIE 4784A-35 GLAST LAT Silicon Tracker Robert P. JohnsonSPIE 47 th Annual Meeting1 GLAST Large Area Telescope Silicon-Strip Tracker Robert P. Johnson.
DESPEC A Algora IFIC (Valencia) for the Ge array working group.
Status and Perspectives for the NuSTAR collaboration Reiner Krücken Physik Department E12 Technische Universität München.
GLAST LAT ProjectMarch 24, B Tracker Peer Review, WBS GLAST Large Area Telescope: Tracker Subsystem WBS B: EM Mini-Tower Robert Johnson.
Development of a Segmented Planar Germanium Imaging Detector
- Performance Studies & Production of the LHCb Silicon Tracker Stefan Koestner (University Zurich) on behalf of the Silicon Tracker Collaboration IT -
FAIR (Facility for Antiproton and Ion Research) (Darmstadt, Germany) low-energy cave MeV/u fragmentation/fission ~1GeV/u fragment separator 350m.
GSI, Si microstrip detectors for R3B – general concept and prototypes O. Kiselev Gesellschaft für Schwerionenforschung, Darmstadt Institut für.
ICT 1 SINTEF Edge-On Sensor with Active Edge Fabricated by 3D-Technology T. E. Hansen 1), N. Ahmed 1), A. Ferber 2) 1) SINTEF MiNaLab 2) SINTEF Optical.
Front end electronics and system design for the NUSTAR experiments at the FAIR facility Presented by Ian Lazarus on behalf of NUSTAR collaboration FEE.
A novel two-dimensional microstrip sensor for charge division readout D. Bassignana, M. Lozano, G. Pellegrini CNM-IMB (CSIC) M. Fernández, R. Jaramillo,
Study of the MPPC for the GLD Calorimeter Readout Satoru Uozumi (Shinshu University) for the GLD Calorimeter Group Kobe Introduction Performance.
Silicon Detectors for the NUSTAR Experiments – an Overview Peter Egelhof GSI Darmstadt, Germany Working Group on Silicon Detectors NUSTAR Week Kolkata,
AIDA: introduction Advanced Implantation Detector Array (AIDA) UK collaboration: University of Edinburgh, University of Liverpool, STFC Daresbury Laboratory.
Advanced Implantation Detector Array (AIDA): Update & Issues Tom Davinson School of Physics The University of Edinburgh presented by Tom Davinson on behalf.
Proton emission from deformed rare earth nuclei: A possible AIDA physics campaign Paul Sapple PRESPEC Decay Physics Workshop Brighton 12 January 2011.
Gamma-ray Large Area Space Telescope ACD Final Performance
Comparison of GAMMA-400 and Fermi-LAT telescopes
the s process: messages from stellar He burning
Silicon Pixel Detector for the PHENIX experiment at the BNL RHIC
GLAST LAT tracker signal simulation and trigger timing study
DSSSD for b decay investigations of heavy neutron-rich isotopes
SIGMA: a detector for γ-ray spectroscopy & imaging Dr Laura AGATA/GRETINA Collaboration Meeting
AIDA: introduction Advanced Implantation Detector Array (AIDA)
MINOS: a new vertex tracker for in-flight γ-ray spectroscopy
Simulation study for Forward Calorimeter in LHC-ALICE experiment
FAIR – the Universe in the labororatory
Implantation detector as active stopper Rakesh Kumar, P. Doornenbal, I
Presentation transcript:

Decay Spectroscopy at FAIR Using the Advanced Implantation Detector Array (AIDA) presented by Tom Davinson on behalf of the AIDA collaboration Tom Davinson School of Physics The University of Edinburgh

Presentation Outline What? Where? Why? How? Who?

Cost –Approx €1000M –€650M central German government –€100M German regional funding –€250M from international partners Timescale –Feb German funds in budget –2007 start construction –2012 phased start experiments –2014 completion NUSTAR Super FRS Future facility 100 m GSI today SIS 100/300 UNILAC ESR SIS 18 HESR RESR NESR FAIR: Facility for Antiproton and Ion Research

NUSTAR: Nuclear Structure Astrophysics & Reactions Exotic (radioactive) beams formed by fragmentation, selected by separator. HiSpec :gamma spec DeSpec :decay spec LASPEC: laser spec MATS: Penning traps Stored beam (rings): EXL : hadron scattering ELISe : electron scattering AIC : antiproton scattering R 3 B: reactions

FAIR: Production Rates from FAIR CDR, section 2 Predicted Lifetimes > 100ns

r-process Nucleosynthesis along neutron-rich side of valley of stability via s-process and r-process s-process – Red Giants, long timescales, moderate n-flux nucleosynthesis close to valley r-process – Supernova type II?, timescales ~seconds?, high n-flux? nucleosynthesis far from valley equilibrium (n,  ) and ( ,n) reactions? n-capture until binding energy becomes small wait for  decay to nuclei with higher binding energy effect of neutron magic numbers – 82, 126? Require: nuclear masses (r-process pathway)  decay half lives (abundance along pathway)  -delayed neutron emission probabilities (abundance modification)

NUSTAR: DESPEC/HISPEC

DESPEC: Implantation DSSD Concept Super FRS Low Energy Branch (LEB) Exotic nuclei – energies ~50-150MeV/u Implanted into multi-plane, highly segmented DSSD array Implant - decay correlations Multi-GeV DSSD implantation events Observe subsequent p, 2p, , , ,  p,  n … decays Measure half lives, branching ratios, decay energies …

Implantation DSSD Configurations Two configurations proposed: a)8cm x 24cm “cocktail” mode many isotopes measured simultaneously b) 8cm x 8cm high efficiency mode concentrate on particular isotope(s)

DSSD Segmentation We need to implant at high rates and to observe implant – decay correlations for decays with long half lives. DSSD segmentation ensures average time between implants for given x,y quasi-pixel >> decay half life to be observed. Implantation profile  x ~  y ~ 2cm  z ~ 1mm Implantation rate (8cm x 24cm) ~ 10kHz, ~kHz per isotope (say) Longest half life to be observed ~ seconds Implies quasi-pixel dimensions ~ 0.5mm x 0.5mm Segmentation also has instrumentation performance benefits

DSSD Technology well established (e.g. GLAST LAT tracker) 6” wafer technology 10cm x 10cm area 1mm wafer thickness Integrated components a.c. coupling polysilicon bias resistors … important for ASICs Series strip bonding 8.95 cm square Hamamatsu-Photonics SSD before cutting from the 6-inch wafer. The thickness is 400 microns, and the strip pitch is 228 microns.

Kapton readout cables. Tested SSDs procured from Hamamatsu Photonics 19 “trays” stack to form one of 16 Tracker modules. Electronics and SSDs assembled on composite panels. 4 SSDs bonded in series. Composite panels, with tungsten foils bonded to the bottom face , Carbon composite side panels Chip-on-board readout electronics modules. Electronics mount on the tray edges. “Tray” GLAST: Large Area Telescope (LAT) Silicon Tracker from R.P.Johnson et al.

ASIC Compatible Silicon Strip Detectors But … Design complexity more photomasks higher NRE costs (c. £40k) Production complexity more processing steps lower overall yields higher production costs (c. £5k per wafer) Larger area (6” wafers) more restricted range of wafer thicknesses Fractional active area low DSSSD strips 625  m pitch, 575  m width => fractional active area 85%

AIDA: DSSD Array Design 8cm x 8cm DSSDs common wafer design for 8cm x 24cm and 8cm x 8cm configurations 8cm x 24cm 3 adjacent wafers – horizontal strips series bonded 128 p+n junction strips, 128 n+n ohmic strips per wafer strip pitch 625  m wafer thickness 1mm  E, Veto and 6 intermediate planes 4096 channels (8cm x 24cm) overall package sizes (silicon, PCB, connectors, enclosure … ) ~ 10cm x 26cm x 4cm or ~ 10cm x 10cm x 4cm Implantation depth? Stopping power? Ge  detector? Calibration? Radiation damage? Cooling? courtesy B.Rubio

AIDA: Instrumentation Requirements Large number of channels required, limited available space and cost mandate use of Application Specific Integrated Circuit (ASIC) technology. Requirements Selectable gain:low 20GeV FSR : intermediate ? : high 20MeV FSR Noise  ~ 5keV rms. Selectable threshold: minimum ~ high gain ( assume 5  ) Integral and differential non-linearity Autonomous overload recovery ~  s Signal processing time <10  s (decay-decay correlations) Receive timestamp data Timing trigger for coincidences with other detector systems DSSD segmentation reduces input loading of preamplifier and enables excellent noise performance.

AIDA: Instrumentation Requirements contd. Preamplifier overload recovery per D.A.Landis et al., IEEE NS 45 (1998) 805 Originally developed for spaceborne HPGe detectors – possible application for back detectors of DESPEC  -ray detector array?

AIDA: ASIC Concept courtesy I.Lazarus, CCLRC DL - Example design concept - 1 channel of 16 channel ASIC (shown with external FPGA and ADC) - FEE-integrated DAQ - Digital data via fibre-optic cable to PC-based data concentrator/event builder

ASICs: Reality Check The Bad News (and there’s quite a bit)… CMOS design environment passives temperature & voltage dependent area constrains component values parasitic effects poor control of absolute component values Modelling empirical data required time consuming Entry costs MPW – shared NRE costs, higher production costs dedicated – high NRE costs, lower production costs Risk CMOS production process lifetime Limited dynamic range ~2,000:1 (cf. RAL108 ~100,000:1) ASIC channel pitch constrains detector strip pitch The reality is that there are significant design and engineering limitations … compromise will be necessary.

ASICs: Reality Check However, there is some Good News … Mature technology Capability derived from particle, space & X-ray applications Radiation hardness. Sadrozinski, IEEE NS48 (2001) 933 cf. G.E.Moore, Electronics, 19 April 1965 Yokoyama et al., IEEE NS48 (2001) 440

AIDA: General Arrangement

ASICADC Virtex 4FX FPGA Power Supplies and other components Fibre Driver (Laser) for Ethernet 16 ch ASIC (with ADC?) Estimated size: 80x220mm, Estimated power 25W per 128ch (800W total) 128 detector signals in; 1 data fibre out Ethernet MAC ASICADCASICADCASICADCASICADCASICADCASICADCASICADC AIDA: 128 channel FEE Card Concept courtesy I.Lazarus, CCLRC DL

Front End Electronics Data output stage standard format and output medium e.g. 10G Ethernet fibre Correlate by timestamp Clock and Timestamp BUTIS Common Clocks 10/200MHz <100ps/km Slow Control Common database loaded into local controllers over Ethernet Detector HV etc. NUSTAR: Common DAQ Interfaces courtesy I.Lazarus, CCLRC DL

Slow Control BUTIS Timestamps Data Output Switch PC Farm AIDA: System Concept courtesy I.Lazarus, CCLRC DL

AIDA: Current Status Edinburgh – Liverpool – CCLRC DL – CCLRC RAL collaboration - 4 year grant period - DSSD design, prototype and production - ASIC design, prototype and production - Integrated Front End FEE PCB development and production - Systems integration - Software development Deliverable: fully operational DSSD array to DESPEC Proposal approved EPSRC Physics Prioritisation panel meeting April 2006 EPSRC award announcement letters received June 2006 Detailed specification development has commenced M0 – specification finalised and critical review

Resources Cost Total value of fEC proposal c. £2.3M (incl. PG c. £2.6M) Support Manpower CCLRC DLc. 4.2 SYFEE PCB Design DAQ h/w & s/w CCLRC RALc. 3.5 SYASIC Design & simulation ASIC Production Edinburgh/Liverpoolc. 4.5 SYDSSD Design & production FEE PCB production Mechanical housing/support Platform grant support CCLRC DL/Edinburgh/Liverpool

AIDA: Workplan

AIDA: Project Partners The University of Edinburgh (lead RO) Phil Woods et al. The University of Liverpool Rob Page et al. CCLRC DL & RAL John Simpson et al. Project Manager: Tom Davinson Further information:

Acknowledgements Presentation includes material from other people. Thanks to: Ian Lazarus (CCLRC DL) Haik Simon (GSI) Berta Rubio (IFIC, CSIC University of Valencia)

Problem Multi GeV implant followed by decay in region of 1MeV e.g. 20GeV/1MeV = dynamic range Some possible solutions Logarithmic preamps Makes analysis difficult High/low gain preamp pairs (with clamping) Doubles power, halves packing density Fast recovery from saturation Look at this one first ASIC Design Challenge

NUSTAR: Low Energy Branch

AIDA: Project Summary Objective: To construct a new generation ASIC-based Double-sided Silicon Strip Detector system for decay spectroscopy experiments of exotic nuclei on the new FAIR accelerator facility at GSI, Darmstadt, Germany. To commission and test this system in-beam, and perform ongoing implantation-decay experiments, primarily at GSI, prior to the availability of beams from FAIR. 4 years funding from announced May 2006 Collaboration: Detectors and project management- University of Edinburgh FEE, ASIC, DAQ - CCLRC Postdoc (detector/physics) Mechanics- University of Liverpool Total 35 – 40 FTE allocated to this project (scientists, engineers, mechanical designers, technicians)