Current POLARITON LIGHT EMITTING DEVICES: RELAXATION DYNAMICS Simos Tsintzos Dept of Materials Sci. & Tech Microelectronics Group University of Crete /

Slides:



Advertisements
Similar presentations
PLMCN‘10 Bloch-Polaritons in Multiple Quantum Well Photonic Crystals David Goldberg 1, Lev I. Deych 1, Alexander Lisyansky 1, Zhou Shi 1, Vinod M. Menon.
Advertisements

ULTRAFAST CONTROL OF POLARITON STIMULATED SCATTERING IN SEMICONDUCTOR MICROCAVITIES Cornelius Grossmann1 G. Christmann, C. Coulson and J.J. Baumberg Nanophotonics.
Size-dependent recombination dynamics in ZnO nanowires
PROBING THE BOGOLIUBOV EXCITATION SPECTRUM OF A POLARITON SUPERFLUID BY HETERODYNE FOUR-WAVE-MIXING SPECTROSCOPY Verena Kohnle, Yoan Leger, Maxime Richard,
Phonon coupling to exciton complexes in single quantum dots D. Dufåker a, K. F. Karlsson a, V. Dimastrodonato b, L. Mereni b, P. O. Holtz a, B. E. Sernelius.
Lorenzo O. Mereni Valeria Dimastrodonato Gediminas Juska Robert J. Young Emanuele Pelucchi Physical properties of highly uniform InGaAs.
Strong coupling between Tamm Plasmon and QW exciton
Giant Rabi splitting in metal/semiconductor nanohybrids
1 Mechanism for suppression of free exciton no-phonon emission in ZnO tetrapod nanostructures S. L. Chen 1), S.-K. Lee 1), D. Hongxing 2), Z. Chen 2),
Spatial coherence and vortices of polariton condensates
Bose-Einstein Condensation of Trapped Polaritons in a Microcavity Oleg L. Berman 1, Roman Ya. Kezerashvili 1, Yurii E. Lozovik 2, David W. Snoke 3, R.
Carrier and Phonon Dynamics in InN and its Nanostructures
2003/04/071 Characteristic of 850-nm InGaAs/AlGaAs Vertical-Cavity Surface-Emitting Lasers Master’s thesis of Yuni Chang Speaker:Han-Yi Chu National Changhua.
Yoan Léger Laboratory of Quantum Opto-electronics Ecole Polytechnique Fédérale de Lausanne Switzerland.
Optical Engineering for the 21st Century: Microscopic Simulation of Quantum Cascade Lasers M.F. Pereira Theory of Semiconductor Materials and Optics Materials.
School of Physics and Astronomy, University of Nottingham, Nottingham, NG7 2RD, UK. Electrically pumped terahertz SASER device using a weakly coupled AlAs/GaAs.
Generation of twin photons in Triple Microcavities Jérôme TIGNON C. Diederichs, D. Taj, T. Lecomte, C. Ciuti, Ph. Roussignol, C. Delalande Laboratoire.
Polariton Physics and Devices Pavlos G. Savvidis Dept of Materials Sci. & Tech Microelectronics Group University of Crete / IESL.
Deterministic Coupling of Single Quantum Dots to Single Nanocavity Modes Richard Younger Journal Club Sept. 15, 2005 Antonio Badolato, kevin Hennessy,
Optical study of Spintronics in III-V semiconductors
Research Highlights – N. Pelekanos
Optical control of electrons in single quantum dots Semion K. Saikin University of California, San Diego.
High-Q small-V Photonic-Crystal Microcavities
Single Quantum Dot Optical Spectroscopy
Physical Phenomena for TeraHertz Electronic Devices
ITOH Lab. Hiroaki SAWADA
Page 1 Band Edge Electroluminescence from N + -Implanted Bulk ZnO Hung-Ta Wang 1, Fan Ren 1, Byoung S. Kang 1, Jau-Jiun Chen 1, Travis Anderson 1, Soohwan.
Optical Characterization of GaN-based Nanowires : From Nanometric Scale to Light Emitting Devices A-L. Bavencove*, E. Pougeoise, J. Garcia, P. Gilet, F.
Theory of Intersubband Antipolaritons Mauro F
Charge Carrier Related Nonlinearities
Bose-Einstein Condensation of Exciton-Polaritons in a Two-Dimensional Trap D.W. Snoke R. Balili V. Hartwell University of Pittsburgh L. Pfeiffer K. West.
Superradiance, Amplification, and Lasing of Terahertz Radiation in an Array of Graphene Plasmonic Nanocavities V. V. Popov, 1 O. V. Polischuk, 1 A. R.
Photo-induced ferromagnetism in bulk-Cd 0.95 Mn 0.05 Te via exciton Y. Hashimoto, H. Mino, T. Yamamuro, D. Kanbara, A T. Matsusue, B S. Takeyama Graduate.
A Blue Exciton-Polariton Organic Light-Emitting Device
Ordered Quantum Wire and Quantum Dot Heterostructures Grown on Patterned Substrates Eli Kapon Laboratory of Physics of Nanostructures Swiss Federal Institute.
Micro-optical studies of optical properties and electronic states of ridge quantum wire lasers Presented at Department of Physics, Graduate.
Itoh Lab. M1 Masataka YASUDA
Terahertz waves base on SiGe Alloy NTU 林楚軒. Introduction Structure a.SiGe QW intersubband transition b.SiGe QW with dopant helping c.Si with dopant Summary.
Photoluminescence-excitation spectra on n-type doped quantum wire
Strong light-matter coupling: coherent parametric interactions in a cavity and free space Strong light-matter coupling: coherent parametric interactions.
Ultrafast Spectroscopy of Quantum Dots (QDs) Experimentelle Physik IIb FB Physik, Universität Dortmund Ulrike Woggon With thanks to: M.V. Artemyev, P.
Resonant medium: Up to four (Zn,Cd)Se quantum wells. Luminescence selection is possible with a variation of the Cd-content or the well width. The front.
日 期: 指導老師:林克默、黃文勇 學 生:陳 立 偉 1. Outline 1.Introduction 2.Experimental 3.Result and Discussion 4.Conclusion 2.
Heterostructures & Optoelectronic Devices
Slide # 1 Variation of PL with temperature and doping With increase in temperature: –Lattice spacing increases so bandgap reduces, peak shift to higher.
Hybrid Bose-Fermi systems
Advisor: Prof. Yen-Kuang Kuo
Photoluminescence and Photocurrent in a Blue LED Ben Stroup & Timothy Gfroerer, Davidson College, Davidson, NC Yong Zhang, University of North Carolina.
Optical sources Types of optical sources
Growth and optical properties of II-VI self-assembled quantum dots
Alberto Amo, C. Adrados, J. Lefrère, E. Giacobino, A. Bramati
Nano and Giga Challenges in Microelectronics, Cracow, 2004 Spin Injection in Semiconductor Nanostructures Alexey Toropov Ioffe Institute, St.Petersburg,
G. Kioseoglou SEMICONDUCTOR SPINTRONICS George Kioseoglou Materials Science and Technology, University of Crete Spin as new degree of freedom in quantum.
T-shaped quantum-wire laser M. Yoshita, Y. Hayamizu, Y. Takahashi, H. Itoh, T. Ihara, and H. Akiyama Institute for Solid State Physics, Univ. of Tokyo.
1 II-VI semiconductor microcavities microcavity physics polariton stimulation prospects.
J.Vaitkus, L.Makarenko et all. RD50, CERN, 2012 The free carrier transport properties in proton and neutron irradiated Si(Ge) (and comparison with Si)
Conclusion QDs embedded in micropillars are fabricated by MOCVD and FIB post milling processes with the final quality factor about Coupling of single.
Direct Observation of Polariton Waveguide in ZnO nanowire at Room Temperature motivation abstract We report the direct experimental evidence of polariton.
Resonant Zener tunnelling via zero-dimensional states in a narrow gap InAsN diode Davide Maria Di Paola School of Physics and Astronomy The University.
SILVER OAK COLLEGE OF ENGG. & TECHNOLOGY
MBE Growth of Graded Structures for Polarized Electron Emitters
Photonics-More 22 February 2017
Strong infrared electroluminescence from black silicon
An Efficient Source of Single Photons: A Single Quantum Dot in a Micropost Microcavity Matthew Pelton Glenn Solomon, Charles Santori, Bingyang Zhang, Jelena.
Photonics-LED And LASER 29 February 2016
Quantum Dot Lasers ASWIN S ECE S3 Roll no 23.
Magnetic control of light-matter coupling for a single quantum dot embedded in a microcavity Qijun Ren1, Jian Lu1, H. H. Tan2, Shan Wu3, Liaoxin Sun1,
Introduction of Master's thesis of Jih-Yuan Chang and Wen-Wei Lin
Photonics-More 6 March 2019 One More slide on “Bandgap” Engineering.
Kenji Kamide* and Tetsuo Ogawa
Presentation transcript:

Current POLARITON LIGHT EMITTING DEVICES: RELAXATION DYNAMICS Simos Tsintzos Dept of Materials Sci. & Tech Microelectronics Group University of Crete / IESL Polariton emitter Active region Bottom Mirror Top Mirror

Polariton Physics at Crete Spectroscopy & Fabrication Prof. PG Savvidis Prof. NT Pelekanos Simos Tsintzos Tingge Gao Panos Tsotsis Funding: Greek Research Council, ΕΠΕΑΕΚ, EU FP7 Prof. J. J. Baumberg G. Christmann MBE Growth Prof. Z. Hatzopoulos III-V University of Cambridge Collaborations FORTH-IESL University of Crete Dr. G. Kostantinidis Dr. G. Deligeorgis

Demonstration of a polariton LED device operating up to room temperature New schemes of electrical injection assisted by LO phonon enhanced relaxation Electro/Photo-luminescence imaging of polariton dispersions to track relaxation dynamics Conclusions Outline FORTH Microelectronics Research Group Univ. of Crete

First demonstration of strong coupling in MC Stimulated scattering of polaritons Parametric amplification Polariton lasing Polariton condensation Polariton Superfluidity Polariton LEDs J.R. Tischler et al, PRL 95, (2005) (organic) A. Khalifa et al., Appl. Phys. Lett. 92, (2008) T = 10 K D. Bajoni et al., Phys. Rev. B 77, (2008) T = 100 K S. I. Tsintzos et al., Nature 453, 372 (2008), APL (2009) T = 315 K Polariton Physics Polariton Devices Polariton Laser Diodes ? Ultrahigh speed Switches ? Time Spectacular physics related to bosonic character of polaritons Mature understanding Polariton LED Small progress 1992

Approach Electrical injection of polaritons in strongly coupled GaAs semiconductor microcavity Fabricate p-i-n diode microcavities for electrical injection Measure polariton electroluminescence and dispersion relations Technical challenges/issues High resistivity of the DBR mirrors Doping related losses in DBR mirrors and polariton robustness Injection issues: e.g. inhomogeneous pumping of QWs Electrical Injection in Microcavity FORTH Microelectronics Research Group Univ. of Crete high temperature doping profile Polariton LED

Microcavity Design FORTH Microelectronics Research Group Univ. of Crete Designed to operate at high temperatures Multiple QWs to enhance Rabi splitting

Polariton Electroluminescence S. Tsintzos et al., Nature 453, 372 (2008) Emission collected normal to the device FORTH Microelectronics Research Group Univ. of Crete Temperature (K) Energy (eV) Clear anticrossing observed Direct emission from exciton polariton states Exciton ~ -0.38meV / K Cavity ~ meV /K Temperature tuning Rabi splitting of 4.4meV at 219 K

Room temperature Polariton LED Polariton LED with 8 QWs to increase Rabi splitting Lateral injection scheme to improve injection ΔΤ=5K I=0.8mA Rabi splitting of ~4meV at T=288K FORTH Microelectronics Research Group Univ. of Crete S. Tsintzos et al, APL 94, (2009)

Large Rabi splitting in GaAs QW MCs at (T=300K) FORTH Microelectronics Research Group Univ. of Crete Θ GaAs QWs DBR AlAs Al 0.15 Ga 0.85 As DBR AlAs Al 0.15 Ga 0.85 As Clear anticrossing Rabi splitting of 6.5mev observed zero detuning

V(8), the only adjustable parameter Fitting of Rabi Splitting versus T and N FORTH Microelectronics Research Group Univ. of Crete (for zero detuning) Exciton, cavity mode linewidths with temperature N=8 GaAs InGaAs # QWs

Collapse of Strong Coupling Regime at High Densities T=235K ~ Relaxation bottleneck FORTH Microelectronics Research Group Univ. of Crete Injection density at 22mA ~ pol/cm 2 need new injection schemes that bypass bottleneck

Microcavity structure exploiting LO phonon enhanced relaxation FORTH Microelectronics Research Group Univ. of Crete holes DBR polariton LO-phonon Electrons DBR Using GaAs/AlGaAs QWs

Electroluminescence of LO phonon-designed MCs FORTH Microelectronics Research Group Univ. of Crete Red shift in EL caused by heating Due to series resistance of the DBRs

Single shot imaging of the polariton dispersions θ FORTH Microelectronics Research Group Univ. of Crete Look at polariton population along the lower branch. Applicable to both PL and EL measurements on small mesas objective sample 4K pin-hole θ θ CCD θ λ λ confocal E EL

Power dependence Images Nonlinearity at very low power Weak Coupling Strong Coupling Nonlinearity possibly due to screening of diode built-in field

FORTH Microelectronics Research Group Univ. of Crete Enhanced Polariton High Injection

FORTH Microelectronics Research Group Univ. of Crete Enhanced Polariton High Temperature T=140K P=0.4mW T=60K P=0.4mW

GaAs polariton LED device operating up to RT New approach to electrical injection exploiting LO phonon enhanced relaxation Imaging shows enhanced relaxation at higher Temperatures and Powers and collapse of bottleneck region. Thank you Summary FORTH Microelectronics Research Group Univ. of Crete