Giant Rabi splitting in metal/semiconductor nanohybrids J. Bellessa, C. Symonds, J.C. Plenet, A. Lemaitre, K. Vinck, D. Felbacq Laboratoire de Physique de la Matière Condensée et Nanostructure, Lyon, France Laboratoire de Photonique et Nanostructures, Marcoussis, France Groupement d’Etude des Semiconducteurs, Montpellier, France
Outline Properties of surface plasmons Description of surface plasmons Plasmons in strong coupling Hybridisation localised plasmon/exciton Localised plasmon in nanodisks Nanodisks with organic semiconductor Particularities of the hybrid states Inhomogeneous broadenings Geometrical effects Conclusion
Surface plasmon Interface metal / dielectric material Properties of surface plasmons Surface plasmon Interface metal / dielectric material Dielectric Metal 100nm 20nm W. L. Barnes et al., Nature, 418, 306 (2002) 2D 1D plasmon guide 0D nanoparticules Damping in the metal
Delocalised plasmon in strong coupling Properties of surface plasmons Delocalised plasmon in strong coupling Weak coupling : Luminescence enhancement with nanoantennas D.E. Gomez et al. Nano Lett. 10 274 (2010) Strong interaction between plasmons and : Aggregated dyes Laser dyes such as Rhodamine 6G Semiconductor nanocrystals arrays : CdSe dots under a thin silver film Rabi splitting of 112 meV T.K. Hakala et al. PRL 103 053602 (2009) J. Bellessa, C. Bonnand, J.C. Plenet, J. Mugnier., PRL 93, 36404 (2004)
Plasmon in strong coupling Properties of surface plasmons Plasmon in strong coupling Plasmons in nanoshells Metallic nanostructures Holes and voids in metallic structures GOLD N. T. Fofang et al. Nanoletters 8 10 3481 (2008) J. Dintinger et al. Phys. Rev. B 71, 035424 (2005) Y. Sugawara et al. PRL 97, 266808 (2006)
Localised plasmons Discrete Plasmon resonance Hybridisation localised plasmon/exciton Localised plasmons Ag Nanodisks control of the environment and size Discrete Plasmon resonance Distance between the disks 200nm Low inhomogeneous broadening 300nm
Bare plasmon resonances Hybridisation localised plasmon/exciton Bare plasmon resonances Transmission of nanodisks Plasmon resonances energy : size dependant linewidth 150meV No plasmon overlapping
Nanodisks with TDBC Nanodisks covered with a TDBC layer Hybridisation localised plasmon/exciton Nanodisks with TDBC Nanodisks covered with a TDBC layer 1.7 1.8 1.9 2.0 2.1 2.2 2.3 2.4 2.5 2.6 0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0 Absorption (a. u.) Transmission Energy (eV) 121 nm 143 nm 111 nm (b) (a) Three transmission dips TDBC absorption two size dependant dips Uncoupled regions Bare TDBC
Two levels model Formation of localised plasmon/ exciton mixed states Hybridisation localised plasmon/exciton Two levels model Formation of localised plasmon/ exciton mixed states Eplasmon Eexciton ħW
Formation of polaritons Hybridisation localised plasmon/exciton Formation of polaritons Rabi splitting depends on TDBC thickness FDTD simulations Rabi energy 450meV 20% of the transition energy 1 TDBC layer 2 TDBC layers (b) Nanodisk diameter (nm) 100 120 140 160 180 200 220 1.6 1.7 1.8 1.9 2.0 2.1 2.2 2.3 2.4 2.5 Energy (eV) 2.5 2.4 2.3 2.2 2.1 450meV Energy (eV) 2.0 1.9 1.8 1.7 1.6 100 120 140 160 180 200 220 Nanodisk diameter (nm) J. Bellesa et al. Phys. Rev. B 80, 33303 (2009)
Homogeneous and inhomogeneous broadenings Particularities of the hybrid states Homogeneous and inhomogeneous broadenings In microcavities In nanoparticles N photon Excitons N. F. Fofang et al. Nanolett. 2008, 8 (10), 3481 N ? exciton plasmons ERabi<ginhomogène Strong coupling
Distance between disks Particularities of the hybrid states Distance between disks Large modification of the bare plasmons Diffractive effects Rabi energy roughly unchanged
Conclusion Localized plasmon/exciton hybridization Rabi splitting of 450 meV (20% transition energy) Model system for cylindrical nanoparticles with controlled size and environment