Optimal Collusion-Resistant Mechanisms with Verification Carmine Ventre Joint work with Paolo Penna.

Slides:



Advertisements
Similar presentations
On Designing Truthful Mechanisms for Online Scheduling V. Auletta, R. De Prisco, P.P. and G. Persiano Università di Salerno.
Advertisements

Combinatorial Auction
Private capacities in mechanism design Vincenzo Auletta Paolo Penna Giuseppe Persiano Università di Salerno, Italy.
Truthful Mechanisms for Combinatorial Auctions with Subadditive Bidders Speaker: Shahar Dobzinski Based on joint works with Noam Nisan & Michael Schapira.
Coordination Mechanisms for Unrelated Machine Scheduling Yossi Azar joint work with Kamal Jain Vahab Mirrokni.
Non-linear objectives in mechanism design Shuchi Chawla University of Wisconsin – Madison FOCS 2012.
Mechanisms with Verification Carmine Ventre Teesside University.
Combinatorial Auctions with Complement-Free Bidders – An Overview Speaker: Michael Schapira Based on joint works with Shahar Dobzinski & Noam Nisan.
6.896: Topics in Algorithmic Game Theory Lecture 21 Yang Cai.
Real-Time Competitive Environments: Truthful Mechanisms for Allocating a Single Processor to Sporadic Tasks Anwar Mohammadi, Nathan Fisher, and Daniel.
Shadow Prices vs. Vickrey Prices in Multipath Routing Parthasarathy Ramanujam, Zongpeng Li and Lisa Higham University of Calgary Presented by Ajay Gopinathan.
Collusion-Resistant Mechanisms with Verification Yielding Optimal Solutions Carmine Ventre (University of Liverpool) Joint work with: Paolo Penna (University.
Slide 1 of 31 Noam Nisan Approximation Mechanisms: computation, representation, and incentives Noam Nisan Hebrew University, Jerusalem Based on joint works.
Algorithmic mechanism design Vincent Conitzer
Strongly Polynomial-Time Truthful Mechanisms in One Shot Paolo Penna 1, Guido Proietti 2, Peter Widmayer 3 1 Università di Salerno 2 Università de l’Aquila.
On Optimal Single-Item Auctions George Pierrakos UC Berkeley based on joint works with: Constantinos Daskalakis, Ilias Diakonikolas, Christos Papadimitriou,
Alternatives to Truthfulness Are Hard to Recognize Carmine Ventre (U. of Liverpool) Joint work with: Vincenzo Auletta & Paolo Penna & Giuseppe Persiano.
USING LOTTERIES TO APPROXIMATE THE OPTIMAL REVENUE Paul W. GoldbergUniversity of Liverpool Carmine VentreTeesside University.
Truthful Mechanism Design for Multi-Dimensional Scheduling via Cycle Monotonicity Ron Lavi IE&M, The Technion Chaitanya Swamy U. of Waterloo and.
An Approximate Truthful Mechanism for Combinatorial Auctions An Internet Mathematics paper by Aaron Archer, Christos Papadimitriou, Kunal Talwar and Éva.
Algorithmic Game Theory and Scheduling Eric Angel, Evripidis Bampis, Fanny Pascual IBISC, University of Evry, France GOTha, 12/05/06, LIP 6.
How Bad is Selfish Routing? By Tim Roughgarden Eva Tardos Presented by Alex Kogan.
Seminar In Game Theory Algorithms, TAU, Agenda  Introduction  Computational Complexity  Incentive Compatible Mechanism  LP Relaxation & Walrasian.
Optimal collusion-resistant mechanisms with verification Paolo Penna Carmine Ventre Università di Salerno University of Liverpool Italy UK.
Algorithmic Applications of Game Theory Lecture 8 1.
Truthful Approximation Mechanisms for Scheduling Selfish Related Machines Motti Sorani, Nir Andelman & Yossi Azar Tel-Aviv University.
CRESCCO Project IST Work Package 2 Algorithms for Selfish Agents Università di Salerno Project funded by the Future and.
CRESCCO Project IST Work Package 2 Algorithms for Selfish Agents V. Auletta, P. Penna and G. Persiano Università di Salerno
Collusion-Resistant Mechanisms with Verification Yielding Optimal Solutions Paolo Penna and Carmine Ventre.
Ariel D. Procaccia (Microsoft)  Best advisor award goes to...  Thesis is about computational social choice Approximation Learning Manipulation BEST.
Utilitarian Mechanism Design for Multi-Objective Optimization Fabrizio Grandoni (U. Tor Vergata, Roma) Piotr Krysta (U. of Liverpool) Stefano Leonardi.
The Algorithmic Structure of Group Strategyproof Budget- Balanced Cost-Sharing Mechanisms Paolo Penna & Carmine Ventre Università di Salerno Italy.
Limitations of VCG-Based Mechanisms Shahar Dobzinski Joint work with Noam Nisan.
Mechanism Design. Overview Incentives in teams (T. Groves (1973)) Algorithmic mechanism design (Nisan and Ronen (2000)) - Shortest Path - Task Scheduling.
Sharing the cost of multicast transmissions in wireless networks Carmine Ventre Joint work with Paolo Penna University of Salerno, WP2.
SECOND PART: Algorithmic Mechanism Design. Mechanism Design MD is a subfield of economic theory It has a engineering perspective Designs economic mechanisms.
Algorithms for Selfish Agents Carmine Ventre Università degli Studi di Salerno.
Combinatorial Auction. Conbinatorial auction t 1 =20 t 2 =15 t 3 =6 f(t): the set X  F with the highest total value the mechanism decides the set of.
More Powerful and Simpler Cost-Sharing Methods Carmine Ventre Joint work with Paolo Penna University of Salerno.
(Optimal) Collusion-Resistant Mechanisms with Verification Paolo Penna & Carmine Ventre Università degli Studi di Salerno Italy.
Truthful Mechanisms for One-parameter Agents Aaron Archer, Eva Tardos Presented by: Ittai Abraham.
Convergence Time to Nash Equilibria in Load Balancing Eyal Even-Dar, Tel-Aviv University Alex Kesselman, Tel-Aviv University Yishay Mansour, Tel-Aviv University.
Mechanism Design Traditional Algorithmic Setting Mechanism Design Setting.
Sharing the cost of multicast transmissions in wireless networks Carmine Ventre Joint work with Paolo Penna University of Salerno.
Incentive-compatible Approximation Andrew Gilpin 10/25/07.
Truthfulness and Approximation Kevin Lacker. Combinatorial Auctions Goals – Economically efficient – Computationally efficient Problems – Vickrey auction.
Mechanism Design for Real-Time Scheduling Carl Bussema III 18 April 2005 Based on "Mechanism Design for Real-Time Scheduling" by Ryan Porter.
Brief Annoucement: An algorithm composition scheme preserving monotonicity Davide Bilò ETH Zürich, Switzerland Luca Forlizzi Università dell'Aquila, Italy.
Techniques for truthful scheduling Rob van Stee Max Planck Institute for Informatics (MPII) Germany.
By: Amir Ronen, Department of CS Stanford University Presented By: Oren Mizrahi Matan Protter Issues on border of economics & computation, 2002.
Mechanisms with Verification for Any Finite Domain Carmine Ventre Università degli Studi di Salerno.
Market Design and Analysis Lecture 5 Lecturer: Ning Chen ( 陈宁 )
Strategyproof Auctions For Balancing Social Welfare and Fairness in Secondary Spectrum Markets Ajay Gopinathan, Zongpeng Li University of Calgary Chuan.
USING LOTTERIES TO APPROXIMATE THE OPTIMAL REVENUE Paul W. GoldbergUniversity of Liverpool Carmine VentreTeesside University.
Algorithms for Incentive-Based Computing Carmine Ventre Università degli Studi di Salerno.
Algorithmic Mechanism Design: an Introduction Approximate (one-parameter) mechanisms, with an application to combinatorial auctions Guido Proietti Dipartimento.
AAMAS 2013 best-paper: “Mechanisms for Multi-Unit Combinatorial Auctions with a Few Distinct Goods” Piotr KrystaUniversity of Liverpool, UK Orestis TelelisAUEB,
Mechanisms with Verification Carmine Ventre [Penna & V, 2007] [V, WINE ‘06]
Combinatorial Auctions without Money Dimitris Fotakis, NTUA Piotr Krysta, University of Liverpool Carmine Ventre, Teesside University.
Algorithmic Mechanism Design Shuchi Chawla 11/7/2001.
Combinatorial Auction. A single item auction t 1 =10 t 2 =12 t 3 =7 r 1 =11 r 2 =10 Social-choice function: the winner should be the guy having in mind.
Truthful and near-optimal mechanism design via linear programming Chaitanya Swamy Caltech and U. Waterloo Joint work with Ron Lavi Caltech.
Bayesian Algorithmic Mechanism Design Jason Hartline Northwestern University Brendan Lucier University of Toronto.
(Algorithmic) Mechanism Design Paolo Penna. Mechanism Design Find correct rules/incentives.
Combinatorial Public Projects
An Optimal Lower Bound for Anonymous Scheduling Mechanisms
Combinatorial Auction
Combinatorial Auction
Combinatorial Auction
Combinatorial Auction
Presentation transcript:

Optimal Collusion-Resistant Mechanisms with Verification Carmine Ventre Joint work with Paolo Penna

Routing in Networks s Internet Change over time (link load) Private Cost No Input Knowledge Selfishness d

Mechanisms: Dealing w/ Selfishness Augment an algorithm with a payment function The payment function should provide incentives for telling the truth Design a truthful mechanism s d

d Truthful Mechanisms M = (A, P) s Utility (true,,...., ) ≥ Utility (false,,...., ) for all true, false, and,..., M truthful if: Utility = Payment – cost = – true

VCG Mechanisms M = (A, P) P e = A e=∞ – A e=0 if e is selected (0 otherwise) M is truthful iff A is optimal P e’ = A e’=∞ – A e’=0 = 7 e’ A e’=∞ = 14 A e’=0 = 10 – 3 = 7 s Utility e’ = P e’ – cost e’ = 7 – 3 d

Inside VCG Payments P e = A e=∞ – A e=0 Cost of best solution w/o e Independent from e h(b –e ) Cost of computed solution w/ e = 0 Mimimum (A is OPT) A(true)  A(false) b –e all but e Cost nondecreasing in the agents’ bids

Describing Real World: Collusions Accused of bribery  ~900,000 results on Google  6,463 results on Google news Are VCGs collusion-resistant mechanisms?

Collusion-Resistant Mechanisms Coalition C + – ∑ Utility (true, true,,...., ) ≥ ∑ Utility (false,false,,...., ) for all true, false, C and,..., in C

VCGs and Collusions s 3 1 6e1e1 e2e2 e3e3 P e 1 (true) = 6 – 1 = 5 e 3 reported value “Promise 10% of my new payment” (briber) 11 P e 1 (false) = 11 – 1 – 1 = 9 “P e3 (false)” = 1 bribe h( ) must be a constantb –e d

Preventing Collusions is expensive Pay all the agents(!!!) 2 10 e e’ Truthfulness e’ to enter the solution by unilaterally lying must underbid (competition, i.e., non-cooperative behaviour) In coalition they can make the cut really expensive (cooperative behaviour) Utility C (true)= P e – 2 true 10+P e true 11+P e true P e’ = 0 Utility C (false)=P e’ – 10 false ≥ 10 + P e – 10 > Utility C (true) true s d

Constructing Collusion-Resistant Mechanisms (CRMs) h is a constant function Pay all the agents A(true)  A(false) Coalition C (A, VCG payments) is a CRM How to ensure it?“Impossible” for classical mechanisms ([GH05]&[S00])

Describing Real World: Verification TCP datagram starts at time t  Expected delivery is time t + 1…  … but true delivery time is t + 3 It is possible to partially verify declarations by observing delivery time Other examples:  Distance  Amount of traffic  Routes availability 31 TCP IDEA ([Nisan & Ronen, 99]): No payment for agents caught by verification

The Verification Setting Give the payment if the results are given “in time”  Agent is selected when reporting false 1. true  false  just wait and get the payment 2. true > false  no payment (punish agent )

Exploiting Verification: Optimal CRMs No agent is caught by verification At least one agent is caught by verification A(true) = A(true, (t 1, …, t n ))  A(false, (t 1, …, t n ))  A(false, (b 1, …, b n )) = A(false) A is OPT For any i t i  b i Cost is monotone VCG hypotheses Usage of the constant h for bounded domains VCGs with verification are collusion-resistant Any value between b min e b max

Approximate CRMs Extending technique above: Optimize MinMax + A VCG MinMax extensively studied in AMD  E.g., Interdomain routing and Scheduling Unrelated Machines  Many lower bounds even for two players and exponential running time mechanisms E.g., [NR99], [AT01], [GP06], [CKV07], [MS07], [G07], [PSS08], [MPSS09] MinMax objective functions admit a (1+ε)-apx CRM

Applications * = FPTAS for a constant number of machines # = PTAS for a constant number of machines

Conclusions Collusion-Resistant mechanisms with verification for arbitrary bounded domains optimizing generalization of utilitarian (VCG) cost functions Overcome many impossibility results by using a real-world hypothesis (verification) Efficient Mechanisms  Mechanism is polytime if algorithm is

Further Research Frugality of payment scheme? Can we deal with unbounded domains? What is the real power of verification? Explore different definitions for the verification paradigm  [Nisan&Ronen, 1999]  [Green & Laffont, 1986] for which we can also look for untruthful mechanisms Apply verification to CAs