Substitution and Elimination

Slides:



Advertisements
Similar presentations
Halogeno-compounds Chapter 33. Structures Halogenoalkanes: X bond to sp 3 carbon RCH H X RCH R X RCR R X 1 o Primary 2 o Secondary 3 o Tertiary.
Advertisements

Organic Synthesis Notation
4.8 Preparation of Alkyl Halides from Alcohols and Hydrogen Halides
Elimination Reactions
Based on McMurry’s Organic Chemistry, 6th edition
Substitution and Elimination Competing Reactions
Elimination Reactions
Elimination Reactions of Alkyl Halides : Chapter 9
Chapter 7 Elimination Reactions
ELIMINATION REACTIONS
ELIMINATION REACTIONS:
Dehydrohalogenation of Alkyl Halides E2 and E1 Reactions in Detail
Inversion of configuration
By Mrs. Azduwin Khasri 23rd October 2012
Nucleophilic Substitutions and Eliminations
CHAPTER 7 Haloalkanes.
Organic Reactions A detailed study of the following:
11. Reactions of Alkyl Halides: Nucleophilic Substitutions and Eliminations Based on McMurry’s Organic Chemistry, 7th edition.
Dr. Wolf's CHM 201 & Dehydrohalogenation of Alkyl Halides.
Elimination Reactions
Preparation of Alkyl Halides (schematic)
ORGANOHALIDES + Nucleophilic Reactions (SN1/2, E1/E2/E1cB)
Substitution Reactions of Alkyl Halides: Chapter 8
Unit 4 Nomenclature and Properties of Alkyl Halides Synthesis of Alkyl Halides Reactions of Alkyl Halides Mechanisms of S N 1, S N 2, E1, and E2 Reactions.
Chapter 7 Organohalides Alkyl halide: a compound containing a halogen atom covalently bonded to an sp 3 hybridized carbon atom –given the symbol RX.
S N 1 Reactions t-Butyl bromide undergoes solvolysis when boiled in methanol: Solvolysis: “cleavage by solvent” nucleophilic substitution reaction in which.
Substitution Reactions
Reaction mechanisms.
Organic Reactions Larry Scheffler Lincoln High School IB Chemistry 3-4 Version
Fischer-Rosanoff Convention Before 1951, only relative configurations could be known. Sugars and amino acids with same relative configuration as (+)-glyceraldehyde.
Chapter 10 Alkyl Halide. S N 2 Mechanism S N 2 Process 5.
Organic Reactions Larry Scheffler Lincoln High School IB Chemistry 3-4 Version
7 7-1 Copyright © 2000 by John Wiley & Sons, Inc. All rights reserved. Introduction to Organic Chemistry 2 ed William H. Brown.
Physical Organic Chemistry CH-4 Nucleophilic aromatic substitution & Elimination reactions Prepared By Dr. Khalid Ahmad Shadid Islamic University in Madinah.
Organic Reactions Version 1.4. Reaction Pathways and mechanisms Most organic reactions proceed by a defined sequence or set of steps. The detailed pathway.
REACTION MECHANISMS IN ORGANIC CHEMISTRY. Imortant Terms:  Electrophiles: electron poor reagents, they seek electrons.  Nucleophiles: electron rich.
© 2011 Pearson Education, Inc. Chapter 9 Elimination Reactions of Alkyl Halides Competition Between Substitution and Elimination Organic Chemistry 6 th.
CHE 311 Organic Chemistry I Dr. Jerome K. Williams, Ph.D. Saint Leo University.
Alcohols and Ethers-2 Dr AKM Shafiqul Islam School of Bioprocess Engineering University Malaysia Perlis (UniMAP)
© Prentice Hall 2001Chapter 101 On Line Course Evaluation for Chemistry 350/Section We are participating in the online course evaluation Please log.
Chapter 9: Elimination Reactions of Alkyl Halides: Competition between Substitutions and Eliminations.
1 Reaction mechanisms. 2 Bond Polarity Partial charges.
Chapter 6 Ionic Reactions-Nucleophilic Substitution and Elimination Reactions of Alkyl Halides.
Chapter 7-2. Reactions of Alkyl Halides: Nucleophilic Substitutions Based on McMurry’s Organic Chemistry, 6 th edition.
William Brown Thomas Poon Chapter Seven Haloalkanes.
Reactions of Alcohols, Amines, Ethers, and Epoxides
Solvolysis of Tertiary and Secondary Haloalkanes
R-Z, Z = electron withdrawing group substitution elimination Leaving group sp 3 Nucleophilic Substitution Reaction Alkyl halides are good model to study.
4-תגובות התמרה ואלימינציה
ELIMINATION REACTIONS: ALKENES, ALKYNES
More About the Families in Group II
Substitution and Elimination Reactions of Alkyl Halides
Introduction The polarity of a carbon-halogen bond leads to the carbon having a partial positive charge In alkyl halides this polarity causes the carbon.
Alkyl Halides B.Sc. I PGGC-11 Chandigarh.
Halogen compounds are important for several reasons
Nucleophilic Substitution
Substitution and Elimination
Substitution and Elimination
Organic Halides Derivatives of alkanes where one or more hydrogen atoms is replaced by a halogen.
Copyright © 2014 John Wiley & Sons, Inc. All rights reserved.
Introduction The polarity of a carbon-halogen bond leads to the carbon having a partial positive charge In alkyl halides this polarity causes the carbon.
Figure Number: CO Title: Figure 10.5
Nucleophilic substitution and elimination reactions
Chapter 7 Organohalides: Nucleophilic Substitutions and Eliminations
Figure: UN Title: Substitution versus elimination. Caption:
ELIMINATION REACTIONS: ALKENES, ALKYNES
Chapter 8 Substitution and Elimination Reactions of Alkyl Halides
2/24/2019 CHEM 244 PRINCIPLES OF ORGANIC CHEMISTRY I FOR CHEMICAL ENGINEERING’ STUDENTS, COLLEGE OF ENGINEERING PRE-REQUISITES COURSE; CHEM 101 CREDIT.
Mumbai University (Sybsc) .organic chemistry (USCH301) (SEM III )
OBJECTIVES 1. Describe two pathways (mechanisms) to account for substitution at sp3 carbons bearing an electronegative atom (leaving group) 2. Discuss.
Presentation transcript:

Substitution and Elimination Reaction of Alkyl Halides

Organic compounds with an electronegative atom or an electron-withdrawing group bonded to a sp3 carbon undergo substitution or elimination reactions - Substitution Elimination Halide ions are good leaving groups. Substitution reaction on these compounds are easy and are used to get a wide variety of compounds alkyl fluoride alkyl chloride alkyl bromide alkyl iodide

Alkyl Halides in Nature Synthesized by red algae red algae Synthesized by sea hare a sea hare

sea hare

Alkyl Halides in Nature Several marine organisms, including sponges, corals, and algae, synthesize organohalides (halogen-containing organic compounds) that they use to deterpredators. For example, red algae synthesize a toxic, foultastingorganohalide that keeps predators from eating them. One predator, however, that is not deterred is a mollusk called a sea hare.

Alkyl Halides in Nature After consuming red algae, a sea hare converts the original organohalide into a structurally similar compound it uses for its own defense. Unlike other mollusks, a sea hare doesnot have a shell. Its method of defense is to surround itself with a slimy material that contains the organohalide, thereby protecting itself from carnivorous fish.

Substitution Reaction with Halides (1) (2) bromomethane methanol If concentration of (1) is doubled, the rate of the reaction is doubled. If concentration of (1) and (2) is doubled, the rate of the reaction quadruples. If concentration of (2) is doubled, the rate of the reaction is doubled.

Substitution Reaction with Halides (1) (2) bromomethane methanol Rate law: rate = k [bromoethane][OH-] this reaction is an example of a SN2 reaction. S stands for substitution N stands for nucleophilic 2 stands for bimolecular

Mechanism of SN2 Reactions Alkyl halide Relative rate 1200 40 1 ≈ 0 The rate of reaction depends on the concentrations of both reactants. When the hydrogens of bromomethane are replaced with methyl groups the reaction rate slow down. The reaction of an alkyl halide in which the halogen is bonded to an asymetric center leads to the formation of only one stereoisomer

Mechanism of SN2 Reactions Hughes and Ingold proposed the following mechanism: Transition state Increasing the concentration of either of the reactant makes their collision more probable.

Mechanism of SN2 Reactions Steric effect activation energy: DG2 Energy activation energy: DG1 reaction coordinate reaction coordinate Inversion of configuration (R)-2-bromobutane (S)-2-butanol

Factor Affecting SN2 Reactions The leaving group relative rates of reaction pKa HX HO- + RCH2I RCH2OH + I- 30 000 -10 HO- + RCH2Br RCH2OH + Br- 10 000 -9 HO- + RCH2Cl RCH2OH + Cl- 200 -7 HO- + RCH2F RCH2OH + F- 1 3.2 The nucleophile In general, for halogen substitution the strongest the base the better the nucleophile. pKa Nuclephilicity

SN2 Reactions With Alkyl Halides an alcohol a thiol an ether a thioether an amine an alkyne a nitrile

Substitution Reactions With Halides 1-bromo-1,1-dimethylethane 1,1-dimethylethanol Rate law: rate = k [1-bromo-1,1-dimethylethane] this reaction is an example of a SN1 reaction. S stands for substitution N stands for nucleophilic 1 stands for unimolecular If concentration of (1) is doubled, the rate of the reaction is doubled. If concentration of (2) is doubled, the rate of the reaction is not doubled.

Mechanism of SN1 Reactions Alkyl halide Relative rate ≈ 0 * 12 1 200 000 The rate of reaction depends on the concentrations of the alkyl halide only. When the methyl groups of 1-bromo-1,1-dimethylethane are replaced with hydrogens the reaction rate slow down. The reaction of an alkyl halide in which the halogen is bonded to an asymetric center leads to the formation of two stereoisomers * a small rate is actually observed as a result of a SN2

Mechanism of SN1 Reactions nucleophile attacks the carbocation slow C-Br bond breaks fast Proton dissociation

Mechanism of SN1 Reactions Rate determining step Carbocation intermediate DG R++ X- + R-OH2 R-OH

Mechanism of SN1 Reactions Inverted configuration relative the alkyl halide Same configuration as the alkyl halide

Factor Affecting SN1 reaction Two factors affect the rate of a SN1 reaction: The ease with which the leaving group dissociate from the carbon The stability of the carbocation The more the substituted the carbocation is, the more stable it is and therefore the easier it is to form. As in the case of SN2, the weaker base is the leaving group, the less tightly it is bonded to the carbon and the easier it is to break the bond The reactivity of the nucleophile has no effect on the rate of a SN1 reaction

Comparison SN1 – SN2 SN1 SN2 A two-step mechanism A one-step mechanism A unimolecular rate-determining step A bimolecular rate-determining step Products have both retained and inverted configuration relative to the reactant Product has inverted configuration relative to the reactant Reactivity order: 3o > 2o > 1o > methyl methyl > 1o > 2o > 3o

Elimination Reactions 1-bromo-1,1-dimethylethane 2-methylpropene Rate law: rate = k [1-bromo-1,1-dimethylethane][OH-] this reaction is an example of a E2 reaction. E stands for elimination 2 stands for bimolecular

The mechanism shows that an E2 reaction is a one-step reaction The E2 Reaction A proton is removed Br- is eliminated The mechanism shows that an E2 reaction is a one-step reaction

Elimination Reactions 1-bromo-1,1-dimethylethane 2-methylpropene Rate law: rate = k [1-bromo-1,1-dimethylethane] this reaction is an example of a E1 reaction. E stands for elimination 1 stands for unimolecular If concentration of (1) is doubled, the rate of the reaction is doubled. If concentration of (2) is doubled, the rate of the reaction is not doubled.

The E1 Reaction The base removes a proton The alkyl halide dissociate, forming a carbocation The mechanism shows that an E1 reaction is a two-step reaction

Products of Elimination Reaction 30% 50% 80% 2-butene 2-bromobutane 20% 1-butene The most stable alkene is the major product of the reaction for both E1 and E2 reaction The greater the number of alkyl substituent the more stable is the alkene For both E1 and E2 reactions, tertiary alkyl halides are the most reactive and primary alkyl halides are the least reactive

Competition Between SN2/E2 and SN1/E1 rate = k1[alkyl halide] + k2[alkyl halide][nucleo.] + k3[alkyl halide] + k2[alkyl halide][base] SN2 and E2 are favoured by a high concentration of a good nucleophile/strong base SN1 and E1 are favoured by a poor nucleophile/weak base, because a poor nucleophile/weak base disfavours SN2 and E2 reactions

Competition Between Substitution and Elimination SN2/E2 conditions: In a SN2 reaction: 1o > 2o > 3o In a E2 reaction: 3o > 2o > 1o 10% 90% 75% 25% 100%

Competition Between Substitution and Elimination SN1/E1 conditions: All alkyl halides that react under SN1/E1 conditions will give both substitution and elimination products (≈50%/50%)

Summary Alkyl halides undergo two kinds of nucleophilic subtitutions: SN1 and SN2, and two kinds of elimination: E1 and E2. SN2 and E2 are bimolecular one-step reactions SN1 and E1 are unimolecular two step reactions SN1 lead to a mixture of stereoisomers SN2 inverts the configuration od an asymmetric carbon The major product of a elimination is the most stable alkene SN2 are E2 are favoured by strong nucleophile/strong base SN2 reactions are favoured by primary alkyl halides E2 reactions are favoured by tertiary alkyl halides