©Evergreen Public Schools 2011 1 8.1 Arithmetic Sequences Recursive Rules Vocabulary : arithmetic sequence explicit form recursive form 4/11/2011.

Slides:



Advertisements
Similar presentations
TWO STEP EQUATIONS 1. SOLVE FOR X 2. DO THE ADDITION STEP FIRST
Advertisements

You have been given a mission and a code. Use the code to complete the mission and you will save the world from obliteration…
Advanced Piloting Cruise Plot.
© 2008 Pearson Addison Wesley. All rights reserved Chapter Seven Costs.
Copyright © 2003 Pearson Education, Inc. Slide 1 Computer Systems Organization & Architecture Chapters 8-12 John D. Carpinelli.
Chapter 1 The Study of Body Function Image PowerPoint
Copyright © 2011, Elsevier Inc. All rights reserved. Chapter 5 Author: Julia Richards and R. Scott Hawley.
Copyright © 2011, Elsevier Inc. All rights reserved. Chapter 6 Author: Julia Richards and R. Scott Hawley.
Author: Julia Richards and R. Scott Hawley
1 Copyright © 2013 Elsevier Inc. All rights reserved. Appendix 01.
1 Copyright © 2010, Elsevier Inc. All rights Reserved Fig 2.1 Chapter 2.
By D. Fisher Geometric Transformations. Reflection, Rotation, or Translation 1.
Properties Use, share, or modify this drill on mathematic properties. There is too much material for a single class, so you’ll have to select for your.
UNITED NATIONS Shipment Details Report – January 2006.
Business Transaction Management Software for Application Coordination 1 Business Processes and Coordination.
Jeopardy Q 1 Q 6 Q 11 Q 16 Q 21 Q 2 Q 7 Q 12 Q 17 Q 22 Q 3 Q 8 Q 13
Jeopardy Q 1 Q 6 Q 11 Q 16 Q 21 Q 2 Q 7 Q 12 Q 17 Q 22 Q 3 Q 8 Q 13
Title Subtitle.
My Alphabet Book abcdefghijklm nopqrstuvwxyz.
0 - 0.
DIVIDING INTEGERS 1. IF THE SIGNS ARE THE SAME THE ANSWER IS POSITIVE 2. IF THE SIGNS ARE DIFFERENT THE ANSWER IS NEGATIVE.
SUBTRACTING INTEGERS 1. CHANGE THE SUBTRACTION SIGN TO ADDITION
MULT. INTEGERS 1. IF THE SIGNS ARE THE SAME THE ANSWER IS POSITIVE 2. IF THE SIGNS ARE DIFFERENT THE ANSWER IS NEGATIVE.
FACTORING ax2 + bx + c Think “unfoil” Work down, Show all steps.
Addition Facts
Year 6 mental test 5 second questions
Year 6 mental test 10 second questions
Around the World AdditionSubtraction MultiplicationDivision AdditionSubtraction MultiplicationDivision.
ZMQS ZMQS
Richmond House, Liverpool (1) 26 th January 2004.
REVIEW: Arthropod ID. 1. Name the subphylum. 2. Name the subphylum. 3. Name the order.
©Evergreen Public Schools 2010
ABC Technology Project
EU market situation for eggs and poultry Management Committee 20 October 2011.
2 |SharePoint Saturday New York City
VOORBLAD.
Factor P 16 8(8-5ab) 4(d² + 4) 3rs(2r – s) 15cd(1 + 2cd) 8(4a² + 3b²)
Squares and Square Root WALK. Solve each problem REVIEW:
Basel-ICU-Journal Challenge18/20/ Basel-ICU-Journal Challenge8/20/2014.
1..
© 2012 National Heart Foundation of Australia. Slide 2.
Geometric Sequences Teacher Notes
©Evergreen Public Schools /11/2011 Arithmetic Sequences Explicit Rules Teacher Notes Notes : We will continue work students have done with arithmetic.
LO: Count up to 100 objects by grouping them and counting in 5s 10s and 2s. Mrs Criddle: Westfield Middle School.
Understanding Generalist Practice, 5e, Kirst-Ashman/Hull
Chapter 5 Test Review Sections 5-1 through 5-4.
GG Consulting, LLC I-SUITE. Source: TEA SHARS Frequently asked questions 2.
Addition 1’s to 20.
Model and Relationships 6 M 1 M M M M M M M M M M M M M M M M
25 seconds left…...
©Evergreen Public Schools What is a Function Teacher Notes Notes: Today students will create their understanding of a function: “In a function each.
Test B, 100 Subtraction Facts
Januar MDMDFSSMDMDFSSS
Week 1.
Analyzing Genes and Genomes
We will resume in: 25 Minutes.
©Brooks/Cole, 2001 Chapter 12 Derived Types-- Enumerated, Structure and Union.
Essential Cell Biology
Intracellular Compartments and Transport
1 Unit 1 Kinematics Chapter 1 Day
PSSA Preparation.
TASK: Skill Development A proportional relationship is a set of equivalent ratios. Equivalent ratios have equal values using different numbers. Creating.
Essential Cell Biology
Energy Generation in Mitochondria and Chlorplasts
©Evergreen Public Schools Learning Target Target 12 Level 3 I can write an arithmetic sequence in recursive form and translate between the explicit.
Presentation transcript:

©Evergreen Public Schools Arithmetic Sequences Recursive Rules Vocabulary : arithmetic sequence explicit form recursive form 4/11/2011

©Evergreen Public Schools Practice Target Practice 7. Look for and make use of structure. Practice 7. Look for and make use of structure. Practice 8. Look for and express regularity in repeated reasoning.Practice 8. Look for and express regularity in repeated reasoning.

©Evergreen Public Schools Learning Target Sequences 3b I can write an arithmetic sequence in recursive form and translate between the explicit and recursive forms. Sequences 2 I can write an equation and find specific terms of an arithmetic sequence in explicit form.

©Evergreen Public Schools LaunchLaunch Yesterday, we completed the table and wrote an equation to find the area of L ( x ) = 2 x + 1

©Evergreen Public Schools LaunchLaunch With arithmetic sequence L ( x ) = 2 x + 1 L (4) = 9. Find the term follows L (4) L (100) = 201. Find the term follows L (100) Find the term follows L (x) Find the term comes before L ( x )

©Evergreen Public Schools ExploreExplore

7 Sequences from Unit 1 SeqRule L ( x ) 3, 5, 7, … L ( x ) = 2 x + 1 k ( x ) 17, 14, 11, … k ( x ) = We will learn this today. The rule in the 2 nd column is called the explicit rule. The rule in the 3 rd column is called the recursive rule.

©Evergreen Public Schools L ( x ) = 3, 5, 7, … explicit equation: L ( x ) = 2 x + 1 In the pattern L ( x ) the next term is 2 more than what I have now. Now is L ( x ) Next is L ( x +1) So rule is L ( x +1) =

©Evergreen Public Schools a ( x ) = 7, 9, 11, … explicit rule: a ( x ) = 2x + 5 The pattern in a is the next is 2 more than what I have now. Now is a ( x ) Next is a ( x +1) So rule is a ( x +1) = a ( x ) + 2 But wait, isn’t this the same rule for L ? L ( x +1) = L ( x ) + 2

©Evergreen Public Schools So the rule needs one more thing. What could that be? We need to know one term in the sequence. L ( x +1) = L ( x ) + 2 and L (1) = 3 k ( x +1) = a ( x ) – 3 and a (1) = 7

©Evergreen Public Schools For the sequence d ( x +1)= d ( x ) – 5 and d (1) = 63 Find the first four terms in the sequence. If d (20) = -33, find d (21) Write the explicit rule

©Evergreen Public Schools What if I wanted to write the rule with L ( x ) or k ( x ) instead of L ( x +1) or k ( x +1) ? L ( x ) = k ( x ) = L ( x ) and k ( x ) are what I have now. What other term do I need? I need what I had before. L ( x – 1) or k ( x – 1)? L ( x – 1) + 2 and L (1) = 3 k ( x – 1) + 2 and a (1) = 5

©Evergreen Public Schools Write rules for each of the sequences. SequenceExplicit Rule f ( x ) Recursive Rule f ( x + 1) f ( x ) add 3 __, 4, 7, 10, 13, f ( x ) = 3 x + 1 f ( x + 1) = f ( x ) +3 and f (1) = 4 g ( x ) 8, 14, 20, 26, … N ( x ) 34, 30, 26, 22, …

©Evergreen Public Schools Debra’s rules What do you think of Debra’s rules? Sequence f(x)f(x) f ( x ) 4, 7, 10, 13, … f(x) = f(x-1) + 3 and f(2) = 7 g ( x ) 8, 14, 20, 26, … g(x) = I(x-1) + 6 and I(4) = 26 N ( x ) 34, 30, 26, 22, … N(x) = N(x-1) – 4 and N(3) = 26

©Evergreen Public Schools Find the rate of change for each sequence. f(x)f(x) f ( x + 1) Rate of Change L(x) = L(x-1) + 2 and L(1) = 3 L(x+1) = L(x) + 2 and L(1) = 3 f(x) = f(x-1) + 3 and f(1) = 4 f(x+1) = f(x) + 3 and f(1) = 4 g(x) = g(x-1) + 6 and g(1) = 8 g(x+1) = g(x) + 6 and g(1) = 8 N(x) = N(x-1) – 4 and N(1) = 34 N(x+1) = N(x) – 4 and N(1) = 34 +2

©Evergreen Public Schools Common Difference 7, 11, 15, 19, 23 The rate of change is called the common difference, d in an arithmetic sequence. Why do you think it is called that? The first term of an arithmetic sequence, a 1 = 24 and the common difference d = 9. What are the first 5 terms of the sequence?

©Evergreen Public Schools Learning Target Did you hit the target? Sequences 3c I can write an arithmetic sequence in recursive form and translate between the explicit and recursive forms. Sequences 2a I can write an equation and find specific terms of an arithmetic sequence in explicit form.

©Evergreen Public Schools Practice

©Evergreen Public Schools Placemat Write a recursive rule for the sequence p(x) 4, 15, 26, 37, … Name 1 Name 2 Name 3 Name 4